Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Toxicology and Applied Pharmacology 1996-Oct

The prevention of CCl4-induced liver necrosis in mice by naturally occurring methylenedioxybenzenes.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Z S Zhao
P J O'Brien

Ključne riječi

Sažetak

Methylenedioxybenzenes (MDBs) and structurally related alkenylbenzenes were compared for their effectiveness in preventing carbon tetrachloride (CCl4)-induced liver necrosis in mice. Pretreatment with isosafrole, safrole, dihydrosafrole, and benzodioxole at dosages as low as 10 mg/kg significantly prevented the increase in plasma transaminase levels and histochemical changes associated with CCl4-induced liver necrosis, whereas piperonyl butoxide (PBO), eugenol, isoeugenol, sesamol, and curcumin did not prevent CCl4 hepatotoxicity even at 200 mg/kg. However, isosafrole was only partly hepatoprotective if administered 10 min after the toxicant. Liver microsomes isolated 1 hr after isosafrole but not after PBO administration had a markedly decreased CYP2E1 activity. Isosafrole, safrole, dihydrosafrole, and benzodioxole in vitro also inhibited CYP2E1-dependent metabolism more effectively than eugenol and isoeugenol, whereas PBO did not inhibit CYP2E1 activity. The protective effects of isosafrole, safrole, and benzodioxole were therefore predominantly attributed to their ability to inactivate CYP2E1, the major isozyme involved in CCl4 bioactivation. The marked potentiation of CCl4 hepatotoxicity in CYP2E1-induced mice was also completely prevented by isosafrole but not PBO pretreatment, supporting the hypothesis that CYP2E1 inhibition by isosafrole contributes to its hepatoprotective effect against CCl4. Isosafrole and safrole also prevented bromotrichloromethane (BrCCl3)-induced hepatocyte cytotoxicity, whereas PBO was ineffective.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge