Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1988-Aug

The relation of anatomy to water movement and cellular response in young barley leaves.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
A Rayan
K Matsuda

Ključne riječi

Sažetak

Young barley (Hordeum vulgare L. cv Arivat) leaves were examined anatomically and physiologically to infer the pathway of transpirational water movement and to explain why the growing region is more responsive to osmotic stress than the expanded blade. Vessels with open lumens extend from the intercalary meristem to the expanded blade, and all vessels are clustered in five vascular bundles that are separated by 20 closely packed mesophyll cells. Heat pulse transport data confirmed the anatomical suggestion that water moves through the growing region in vessels and not intercellularly, and also showed that stress reduces xylem water transport within 1 minute while transpiration remained unaffected. Water equal in volume to twice that expected in the xylem, and which exchanges more readily with water in the nutrient solution than with most water in tissues, can be extracted easily from growing tissues. It is hypothesized that this water is xylem plus cell wall water, that osmotic stress will quickly reduce its in situ water potential, and that stress causes growth to stop because cells in the growing region can respond rapidly to changes in water potential around them. In the expanded blade, bundles containing vessels are three and eight cells away from the closest and next substomatal cavities. This allows xylem water loss to occur predominantly through the closest stomata, and the expanded blade is believed to be less responsive because effects of stress on xylem water potential are confined largely to cells immediately around the vessels.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge