Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Fungal Genetics and Biology 2012-Feb

The veA gene of the pine needle pathogen Dothistroma septosporum regulates sporulation and secondary metabolism.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Pranav Chettri
Ana M Calvo
Jeffrey W Cary
Sourabh Dhingra
Yanan Guo
Rebecca L McDougal
Rosie E Bradshaw

Ključne riječi

Sažetak

Fungi possess genetic systems to regulate the expression of genes involved in complex processes such as development and secondary metabolite biosynthesis. The product of the velvet gene veA, first identified and characterized in Aspergillus nidulans, is a key player in the regulation of both of these processes. Since its discovery and characterization in many Aspergillus species, VeA has been found to have similar functions in other fungi, including the Dothideomycete Mycosphaerella graminicola. Another Dothideomycete, Dothistroma septosporum, is a pine needle pathogen that produces dothistromin, a polyketide toxin very closely related to aflatoxin (AF) and sterigmatocystin (ST) synthesized by Aspergillus spp. Dothistromin is unusual in that, unlike most other secondary metabolites, it is produced mainly during the early exponential growth phase in culture. It was therefore of interest to determine whether the regulation of dothistromin production in D. septosporum differs from the regulation of AF/ST in Aspergillus spp. To begin to address this question, a veA ortholog was identified and its function analyzed in D. septosporum. Inactivation of the veA gene resulted in reduced dothistromin production and a corresponding decrease in expression of dothistromin biosynthetic genes. Expression of other putative secondary metabolite genes in D. septosporum such as polyketide synthases and non-ribosomal peptide synthases showed a range of different responses to loss of Ds-veA. Asexual sporulation was also significantly reduced in the mutants, accompanied by a reduction in the expression of a putative stuA regulatory gene. The mutants were, however, able to infect Pinus radiata seedlings and complete their life cycle under laboratory conditions. Overall this work suggests that D. septosporum has a veA ortholog that is involved in the control of both developmental and secondary metabolite biosynthetic pathways.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge