Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Hazardous Materials 2015-Oct

Translocation of uranium from water to foodstuff while cooking.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
K C Krishnapriya
Ananya Baksi
Swathi Chaudhari
Soujit Sen Gupta
T Pradeep

Ključne riječi

Sažetak

The present work report the unusual uranium uptake by foodstuff, especially those rich in carbohydrates like rice when they are cooked in water, contaminated with uranium. The major staple diet in South Asia, rice, was chosen to study its interaction with UO2(2+), the active uranium species in water, using inductively coupled plasma mass spectrometry. Highest uptake limit was checked by cooking rice at very high uranium concentration and it was found to be good scavenger of uranium. To gain insight into the mechanism of uptake, direct interaction of UO2(2+) with monosaccharides was also studied, using electrospray ionization mass spectrometry taking mannose as a model. The studies have been done with dissolved uranium salt, uranyl nitrate hexahydrate (UO2(NO3)2·6H2O), as well as the leachate of a stable oxide of uranium, UO2(s), both of which exist as UO2(2+) in water. Among the eight different rice varieties investigated, Karnataka Ponni showed the maximum uranium uptake whereas unpolished Basmati rice showed the minimum. Interaction with other foodstuffs (potato, carrot, peas, kidney beans and lentils) with and without NaCl affected the extent of chemical interaction but was not consistent with the carbohydrate content. Uranium interaction with D-mannose monitored through ESI-MS, under optimized instrumental parameters, identified the peaks corresponding to uranyl adduct with mannose monomer, dimer and trimer and the species were confirmed by MS/MS studies. The product ion mass spectra showed peaks illustrating water loss from the parent ion as the collision energy was increased, an evidence for the strong interaction of uranium with mannose. This study would constitute the essential background for understanding interaction of uranium with various foods. Extension of this work would involve identification of foodstuff as green heavy metal scavengers.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge