Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Virology 1995-Jan

Transport of a lysosomally targeted Rous sarcoma virus envelope glycoprotein involves transient expression on the cell surface.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
P B Johnston
J Y Dong
E Hunter

Ključne riječi

Sažetak

The details of intracellular transport pathways for glycosylated proteins remain incompletely described. We previously described a mutant Rous sarcoma virus envelope glycoprotein (gp), mu 26, with an altered membrane-spanning domain that was targeted to lysosomes after traversing the trans-Golgi. This mutant protein was not detectable on the cell surface by immunofluorescence, but its pathway for degradation remained unclear. To investigate this we have employed a second env mutation, S19, that results in a protein which is defective for normal cleavage/activation by intracellular enzymes, but remains susceptible to cleavage by extracellular proteases. Cleavage/activation of the double mutant by trypsin, which could only occur if it was exposed on the cell surface, was observed, indicating that the plasma membrane is an intermediate destination in the transport of this mutant protein. To substantiate these results, cells expressing the mu 26 glycoprotein were incubated with an antibody specific for the native protein in the presence of chloroquine. The specific accumulation of this antibody/gp complex in vesicles, as detected by internal immunofluorescence, confirmed the trypsin cleavage results. We conclude that this rapidly degraded mutant protein is transported from the trans-Golgi to the cell surface, where it is only transiently exposed, and then rapidly endocytosed and lysosomally degraded. The relevance of these results to the targeting of lysosomal proteins is discussed.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge