Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2020-Aug

Effects of Exposure to Ambient Fine Particulate Matter on the Heart of Diet-Induced Obesity Mouse Model

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Yuanyuan Song
Zenghua Qi
Yanhao Zhang
Juntong Wei
Xiaoliang Liao
Ruijin Li
Chuan Dong
Lin Zhu
Zhu Yang
Zongwei Cai

Ključne riječi

Sažetak

Exposure to fine particulate matter (PM2.5) is associated with decreased cardiac function, especially in high risk populations such as obese ones. In this study, impacts of PM2.5 exposure on cardiac function were investigated by using the diet-induced obesity mice model. Mice were fed with normal diet or high-fat diet (HFD) for four weeks and then exposed to phosphate-buffered solution or Taiyuan winter PM2.5 (0.25 mg/kg body/day) through intratracheal instillation for another four weeks. Among physiological indices recorded, heart rate and blood pressure were increased after PM2.5 exposure in the heart of the obese mice. Metabolomics and lipidomics were applied to explore molecular alterations in response to the co-treatment of PM2.5 and HFD. Our results demonstrated both direct impacts on cardiac function and indirect effects resulted from the injury of other organs. Inflammation of lung and hypothalamus may be responsible for the elevation of phenylalanine metabolism in serum and its downstream products: epinephrine and norepinephrine, the catecholamines involves in regulating cardiac system. In intracardiac system, the co-treatment led to imbalance of energy metabolism, in addition to oxidative stress and inflammation. In contrast to the upregulation of glucose and fatty acids uptake and CoA synthesis, levels of ATP, acetyl-CoA and the intermediates in glycolysis pathway decreased in the heart. The results indicated that energy metabolism disorder was possibly one of the important contributing factors to the more severe adverse effects of the combined treatment of HFD and PM2.5.

Keywords: Cardiac function; Energy metabolism; High-fat diet; Lipidomics; Metabolomics; PM(2.5).

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge