Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2020-Jan

Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Xiangshi Kong
Yunxia Zhao
Kai Tian
Xingbing He
Yanyan Jia
Zaihua He
Wenwen Wang
Changguo Xiang
Xingjun Tian

Ključne riječi

Sažetak

Cadmium (Cd) has already caused worldwide concern because of its high biotoxicity to human and plants. This study investigated how nitrogen (N) and phosphorus (P) enrichment alter the toxic morpho-physiological impacts of and accumulation of Cd in hydroponically grown Salix matsudana Koidz cuttings. Our results showed that Cd significantly depressed growth and induced a physiological response on S. matsudana cuttings, exhibiting by reduced biomass, decreased photosynthetic pigment concentrations, and increased soluble protein and peroxidase activity of shoots and roots. N and P enrichment alleviated the Cd toxic effects by increasing production of proline which prevented cuttings from damage by Cd-induced ROS, displaying with decreased malondialdehyde concentration, and stimulated overall Cd accumulation. Enrichment of N and P significantly decreased the upward Cd transfer, combing with enhanced root uptake (stimulated root activity) and retranslocation from stem, resulted in extensive Cd sequestration in S. matsudana roots. In both root and xylem, concentration of Cd is positively correlated with N and P. The improved phytoextraction potential by N and P enrichment was mainly via elevating Cd concentration in roots, probably by increased production of phytochelatins (e.g., proline) which form Cd chelates and help preventing damage from Cd-induced ROS. This study provides support for the application of S. matsudana in Cd phytoextraction even in eutrophic aquatic environments.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge