Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Environmental Research 2020-Jul

Investigation of the Impact of Land-Use Distribution on PM 2.5 in Weifang: Seasonal Variations

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Chengming Li
Kuo Zhang
Zhaoxin Dai
Zhaoting
Xiaoli Liu

Ključne riječi

Sažetak

As air pollution becomes highly focused in China, the accurate identification of its influencing factors is critical for achieving effective control and targeted environmental governance. Land-use distribution is one of the key factors affecting air quality, and research on the impact of land-use distribution on air pollution has drawn wide attention. However, considerable studies have mostly used linear regression models, which fail to capture the nonlinear effects of land-use distribution on PM2.5 (fine particulate matter with a diameter less than or equal to 2.5 microns) and to show how impacts on PM2.5 vary with land-use magnitudes. In addition, related studies have generally focused on annual analyses, ignoring the seasonal variability of the impact of land-use distribution on PM2.5, thus leading to possible estimation biases for PM2.5. This study was designed to address these issues and assess the impacts of land-use distribution on PM2.5 in Weifang, China. A machine learning statistical model, the boosted regression tree (BRT), was applied to measure nonlinear effects of land-use distribution on PM2.5, capture how land-use magnitude impacts PM2.5 across different seasons, and explore the policy implications for urban planning. The main conclusions are that the air quality will significantly improve with an increase in grassland and forest area, especially below 8% and 20%, respectively. When the distribution of construction land is greater than around 10%, the PM2.5 pollution can be seriously substantially increased with the increment of their areas. The impact of gardens and farmland presents seasonal characteristics. It is noted that as the weather becomes colder, the inhibitory effect of vegetation distribution on the PM2.5 concentration gradually decreases, while the positive impacts of artificial surface distributions, such as construction land and roads, are aggravated because leaves drop off in autumn (September-November) and winter (December-February). According to the findings of this study, it is recommended that Weifang should strengthen pollution control in winter, for instance, expand the coverage areas of evergreen vegetation like Pinus bungeana Zucc. and Euonymus japonicus Thunb, and increase the width and numbers of branches connecting different main roads. The findings also provide quantitative and optimal land-use planning and strategies to minimize PM2.5 pollution, referring to the status of regional urbanization and greening construction.

Keywords: PM2.5; boosted regression tree model; land-use distribution; seasonal variations.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge