Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Ecotoxicology and Environmental Safety 2020-Sep

Relative roles of Arbuscular Mycorrhizae in establishing a correlation between soil properties, carbohydrate utilization and yield in Cicer arietinum L. under As stress

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Veza se sprema u međuspremnik
Neera Garg
Amandeep Cheema

Ključne riječi

Sažetak

Accumulation of As (metalloid) degrades soil by negatively affecting the activities of soil enzymes, which in turn reduce growth and yield of the inhabiting plant. Arbuscular mycorrhizal (AM) symbiosis can impart metalloid tolerance in plants by secreting glomalin-related soil protein (GRSP) which binds with As or inertly adsorb in the extraradical mycelial surface. However, profitable use of AM requires selection of the most efficient combination of host plant and fungal species. The current study, therefore designed to study the efficacy of 3 a.m. fungal species: Rhizoglomus intraradices (Ri), Funneliformis mosseae (Fm) and Claroideoglomus claroideum (Cc) in imparting arsenate As(V) and arsenite As(III) stress tolerance in Cicer arietinum (chickpea) genotypes (G) - relatively metalloid tolerant- HC 3 and sensitive- C 235. Roots were found to be more severly affected as compared to shoots which resulted into a major decline in uptake of nutrients, chlorophyll concentrations and yield with As(III) inducing more toxic effects than As(V). HC 3 established more effective mycorrhizal symbiosis and was able to extract higher nutrients from the soil than C 235. Ri was most beneficial in improving plant biomass, carbohydrate utilization and productivity followed by Fm and Cc which could be due to its capability to initiate highest percent colonization and least metalloid uptake in roots through higher glomalin production in the soil. Moreover, Ri was highly efficient in improving soil enzymes activities-phosphatases (PHAs), β-glucosidase (BGA) and invertase (INV), thereby, imparting metalloid tolerance in chickpea genotypes. The results suggested use of Ri-chickpea symbiosis as a promising strategy for ameliorating As stress in chickpea.

Keywords: AM species; Arsenate; Arsenite; Carbohydrates; Glomalin; Soil enzymes.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge