Page 1 od 431 rezultati
Acylamidohydrolases from higher plants have not been characterized or cloned so far. AtAMI1 is the first member of this enzyme family from a higher plant and was identified in the genome of Arabidopsis thaliana based on sequence homology with the catalytic-domain sequence of bacterial
Leaf senescence is an important developmental process for the plant life cycle. It is controlled by endogenous and environmental factors and can be positively or negatively affected by plant growth regulators. It is characterised by major and significant changes in the patterns of gene expression.
Indole-3-acetic acid (IAA), and its precursor indole-3-butyric acid (IBA), control adventitious root (AR) formation in planta. Adventitious roots are also crucial for propagation via cuttings. However, IBA role(s) is/are still far to be elucidated. In Arabidopsis thaliana stem cuttings, 10 μM IBA is
Indole-3-acetic acid (IAA), the major form of the plant hormone auxin, regulates almost every aspect of plant growth and development. Therefore, auxin homeostasis is an essential process in plants. Different metabolic routes are involved in auxin homeostasis, but the catabolic pathway has remained
The seed protein IAP1 from bean (PvIAP1; Phaseolus vulgaris L.) that is modified by the phytohormone indole-3-acetic acid (IAA) was heterologously expressed in the two reference plant species Arabidopsis thaliana and Medicago truncatula. For the transformation of Medicago we devised a novel protocol
The promoter of the nit1 gene, encoding the predominantly expressed isoform of the Arabidopsis thaliana (L.) Heynh. nitrilase isoenzyme family, fused to the beta-glucuronidase gene (uidA) drives beta-glucuronidase expression in the root system of transgenic A. thaliana and tobacco plants. This
An enzyme complex was isolated from Arabidopsis thaliana that catalyzes the entire pathway of biosynthesis of the major plant growth hormone, indole-3-acetic acid (IAA), from (S)-tryptophan. The 160-180 kDa, soluble complex catalyzes a strictly O2-dependent reaction which requires no further added
As in maize [Wright, A.D., Sampson, M. B., Neuffer, M. G., Michalczuk, L., Slovin, J. P. & Cohen, J. D. (1991) Science 254, 998-1000], the major auxin of higher plants, indole-3-acetic acid, is synthesized mainly via a nontryptophan pathway in Arabidopsis thaliana [Normanly, J., Cohen, J. D. & Fink,
We used 5-azido-[7-3H]indole-3-acetic acid (5-azido-[7-3H]IAA), a photoaffinity analogue of the plant hormone indole-3-acetic acid (IAA), to search for auxin-binding proteins in Arabidopsis thaliana membranes. We identified an auxin-binding protein with a molecular mass of 24 kDa (Atpm24) in
[2',2'-(2)H(2)]-indole-3-acetic acid ([2',2'-(2)H(2)]IAA) was prepared in an easy and efficient manner involving base-catalyzed hydrogen/deuterium exchange. 1-O-([2',2'-(2)H(2)]-indole-3-acetyl)-beta-D-glucopyranose, [2',2'-(2)H(2)]-2-oxoindole-3-acetic acid, and
Studies using inhibitors of indole-3-acetic acid (IAA) transport, not only for efflux but influx carriers, provide many aspects of auxin physiology in plants. 1-Naphtoxyacetic acid (1-NOA), an analog of the synthetic auxin 1-N-naphtalene acetic acid (NAA), inhibits the IAA influx carrier AUX1.
The phytohormone indole-3-acetic acid (IAA) plays a vital role in plant growth and development as a regulator of numerous biological processes. Its biosynthetic pathways have been studied for decades. Recent genetic and in vitro labeling evidence indicates that IAA in Arabidopsis thaliana and other
Although accumulating evidence demonstrates the cross talk between melatonin and auxin as derivatives of tryptophan, the underlying signaling events remain unclear. In this study, we found that melatonin and auxin mediated the transcriptional levels of zinc finger of Arabidopsis thaliana (ZAT6) in a
The tryptophan auxotroph mutant trp3-1 of Arabidopsis thaliana (L.) Heynh., despite having reduced levels of L-tryptophan, accumulates the tryptophan-derived glucosinolate, glucobrassicin and, thus, does not appear to be tryptophan-limited. However, due to the block in tryptophan synthase, the
We used tryptophan auxotrophs of the dicot Arabidopsis thaliana (wall cress) to determine whether tryptophan has the capacity to serve as a precursor to the auxin, indole-3-acetic acid (IAA). Quantitative gas chromatography-selected ion monitoring-mass spectrometry (GC-SIM-MS) revealed that the