Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

beta aminobutyric acid/arabidopsis thaliana

Veza se sprema u međuspremnik
ČlanciKliničkim ispitivanjimaPatenti
14 rezultati

β-Aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: link with iron homeostasis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
β-Aminobutyric acid (BABA) is a nonprotein amino acid inducing resistance in many different plant species against a wide range of abiotic and biotic stresses. Nevertheless, how BABA primes plant natural defense reactions remains poorly understood. Based on its structure, we hypothesized and
Acid rain is a worldwide environmental issue that has seriously destroyed forest ecosystems. As a highly effective and broad-spectrum plant resistance-inducing agent, β-aminobutyric acid could elevate the tolerance of Arabidopsis when subjected to simulated acid rain. Using comparative proteomic

Accumulation patterns of endogenous β-aminobutyric acid during plant development and defense in Arabidopsis thaliana.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
We have recently discovered that β-aminobutyric acid (BABA), a molecule known for its ability to prime defenses in plants, is a natural plant metabolite. However, the role played by endogenous BABA in plants is currently unknown. In this study we investigated the systemic accumulation of BABA during

Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on

The priming molecule β-aminobutyric acid is naturally present in plants and is induced by stress.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
The defense system of a plant can be primed for increased defense, resulting in an augmented stress resistance and/or tolerance. Priming can be triggered by biotic and abiotic stimuli, as well as by chemicals such as β-aminobutyric acid (BABA), a nonprotein amino acid considered so far a xenobiotic.

Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense

The Arabidopsis Malectin-Like/LRR-RLK IOS1 Is Critical for BAK1-Dependent and BAK1-Independent Pattern-Triggered Immunity.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on
We have examined the role of the callose synthase PMR4 in basal resistance and beta-aminobutyric acid-induced resistance (BABA-IR) of Arabidopsis thaliana against the hemi-biotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Alternaria brassicicola. Compared to wild-type plants,

Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Priming is a physiological state for protection of plants against a broad range of pathogens, and is achieved through stimulation of the plant immune system. Various stimuli, such as beneficial microbes and chemical induction, activate defense priming. In the present study, we demonstrate that

Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Drought and salt stress tolerance of Arabidopsis (Arabidopsis thaliana) plants increased following treatment with the nonprotein amino acid beta-aminobutyric acid (BABA), known as an inducer of resistance against infection of plants by numerous pathogens. BABA-pretreated plants showed earlier and
Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response.

The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Plant cells can be sensitized toward a subsequent pathogen attack by avirulent pathogens or by chemicals such as β-aminobutyric acid (BABA). This process is called priming. Using a reverse genetic approach in Arabidopsis thaliana, we demonstrate that the BABA-responsive L-type lectin receptor
Plasma membrane-localized pattern recognition receptors such as FLAGELLIN SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize microbe-associated molecular patterns (MAMPs) to activate the first layer of plant immunity termed pattern-triggered immunity (PTI). A reverse genetics approach with genes
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition,
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge