Bosnian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

brefeldin a/arabidopsis thaliana

Veza se sprema u međuspremnik
ČlanciKliničkim ispitivanjimaPatenti
Page 1 od 85 rezultati

Use of Brefeldin A and Wortmannin to Dissect Post-Golgi Organelles Related to Vacuolar Transport in Arabidopsis thaliana.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Eukaryotic cells comprise various organelles surrounded by the membrane. Each organelle is characterized by unique proteins and lipids and has its own specific functions. Single membrane-bounded organelles, including the Golgi apparatus, endosomes, and vacuoles are connected by membrane trafficking.
Membrane traffic at the trans-Golgi network (TGN) is crucial for correctly distributing various membrane proteins to their destination. Polarly localized auxin efflux proteins, including PIN-FORMED1 (PIN1), are dynamically transported between the endosomes and the plasma membrane (PM) in the plant
Plant cell wall polysaccharides are amongst the most complex, heterogeneous and abundant bio-molecules on earth. This makes the biosynthetic enzymes, namely the glycosyltransferases and polysaccharide synthases, important research targets in plant science and biotechnology. As an initial step to

High boron-induced ubiquitination regulates vacuolar sorting of the BOR1 borate transporter in Arabidopsis thaliana.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Boron homeostasis is important for plants, as boron is essential but is toxic in excess. Under high boron conditions, the Arabidopsis thaliana borate transporter BOR1 is trafficked from the plasma membrane (PM) to the vacuole via the endocytic pathway for degradation to avoid excess boron transport.
Arabidopsis thaliana plants expressing AtSERK1 fused to yellow-fluorescent protein were generated. Fluorescence was detected predominantly at the cell periphery, most likely the plasma membrane, of cells in ovules, embryo sacs, anthers, and embryos and in seedlings. The AtSERK1 protein was detected
The movement protein (MP) of cauliflower mosaic virus (CaMV) is a multifunctional protein that potentiates the cell-to-cell and long distance movement of the virus. Functional domains in the CaMV MP were determined by analyzing deletions in green fluorescent protein (GFP)-MP fusions transfected into
Auxin gradients are established and maintained by polarized distribution of auxin transporters that undergo constitutive endocytic recycling from the PM (plasma membrane) and are essential for the gravitropic response in plants. The present study characterizes an inhibitor of endomembrane protein
Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-alpha-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative
In Arabidopsis thaliana, there exist many typical responses to low phosphate (LP) stress, such as inhibition of primary root elongation, proliferation of lateral roots and accumulation of anthocyanin in leaves. The physiological, genetic and molecular mechanisms of these developmental responses
Cell walls are essential for plant development and morphogenesis. The majority of wall proteins are glycosylated, either as N- or O-glycans. Various inhibitors of glycosylation and secretion are used to determine the importance of wall proteins for the functioning of the walls. Tunicamycin is an

Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big
Salt stress is a detrimental factor for plant growth and development. The response to salt stress has been shown to involve components in the intracellular trafficking system, as well as components of the ubiquitin-proteasome system (UPS). In this article, we have identified in Arabidopsis thaliana

Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Clathrin-coated vesicles (CCV) are necessary for selective transport events, including receptor-mediated endocytosis on the plasma membrane and cargo molecule sorting in the trans-Golgi network (TGN). Components involved in CCV formation include clathrin heavy and light chains and several adaptor

EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
The ADP-RIBOSYLATION FACTOR GTPase-ACTIVATING PROTEIN (AGD) 12, a member of the ARF-GAP protein family, affects gravitropism in Arabidopsis thaliana. A loss-of-function mutant lacking AGD12 displayed diminished gravitropism in roots and hypocotyls indicating that both organs are affected by this

Dynamic response of prevacuolar compartments to brefeldin a in plant cells.

Samo registrirani korisnici mogu prevoditi članke
Prijavite se / prijavite se
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we
Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta naukom

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti naukom
  • Prepoznavanje biljaka po slici
  • Interaktivna GPS karta - označite bilje na lokaciji (uskoro)
  • Pročitajte naučne publikacije povezane sa vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoja interesovanja i budite u toku sa istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Sve informacije temelje se na objavljenim naučnim istraživanjima

Google Play badgeApp Store badge