Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2002-May

Early ovule development following self- and cross-pollinations in Eucalyptus globulus Labill. ssp. globulus.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
L M Pound
M A B Wallwork
B M Potts
M Sedgley

Paraules clau

Resum

The study was conducted to identify the self-incompatibility mechanism in Eucalyptus globulus ssp. globulus. Controlled self- and cross-pollinations were conducted on individual flowers from three mature trees that had self-incompatibility levels of 76, 99.6 and 100%. Flowers were harvested at 4, 6 and 8 weeks after pollination. Embryology was investigated by bright field microscopy on material harvested at 4 and 6 weeks after pollination. Fertilization had taken place at 4 weeks after pollination with zygotes and free nuclear endosperm visible. There was a greater proportion of healthy, fertilized ovules in the cross- compared with the self-pollination treatment, and approx. half the ovules examined from both pollen treatments were not fertilized or were degenerating. By 6 weeks after pollination a few zygotes were starting to divide. The number of healthy, fertilized ovules was still greater in the cross-pollination treatment, but the number of healthy fertilized ovules was lower in both treatments compared with 4 weeks after pollination, and many ovules were degenerating. Fertilized ovules were significantly larger than non-fertilized or degenerating ovules and this difference was detectable by eye at 6 and 8 weeks after pollination. The mechanism of self-incompatibility appears to have both late pre- and post-zygotic components.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge