Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Physiology 1989-Sep

Effects of hypoxia and metabolic inhibition on the intracellular sodium activity of mammalian ventricular muscle.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
K T MacLeod

Paraules clau

Resum

1. Intracellular Na+ activity (aiNa) has been measured in Purkinje fibres from sheep heart and in ventricular muscle from rabbit heart during hypoxia and metabolic inhibition. The aiNa was measured using liquid sensor ion-sensitive microelectrodes. 2. Hypoxia, produced by replacement of O2 with N2 in the superfusate, produced an increase in aiNa. This increase was larger if sucrose replaced glucose in the superfusing Tyrode solution. The increase in aiNa was accompanied by a small depolarization. Upon reoxygenation aiNa decreased and cells rapidly repolarized. 3. When oxidative phosphorylation was inhibited by application of 2 mM-cyanide, aiNa increased. This increase was also accompanied by a small depolarization. Upon removal of cyanide, aiNa and membrane potential recovered to control levels. 4. After inhibiting glycolysis, by replacing glucose with 2-deoxy-D-glucose, inhibition of oxidative phosphorylation (by addition of cyanide or exposure to hypoxia) produced a much more rapid increase in aiNa and a large contracture. The rise in aiNa and the occurrence of a contracture could not be inhibited by application of amiloride (1 mM) or tetrodotoxin (1 microgram ml-1). Removal of cyanide or reoxygenation and replacement of glucose resulted in a rapid relaxation of the contracture and a slower decrease in aiNa. 5. The relative rates of increase in aiNa during metabolic inhibition were compared with the rate observed when Na+-K+-ATPase was inhibited by application of 10 mumols l-1 of the cardio-active steroid strophanthidin. The rate of increase of aiNa when both oxidative phosphorylation and glycolysis were inhibited was approximately twice that observed with only oxidative phosphorylation inhibited and approximately half that observed in the presence of 10 microM-strophanthidin. 6. Cyanide, applied when aiNa had been elevated (i.e. during exposure to 10 microM-strophanthidin to inhibit Na+-K+-ATPase), did not produce a contracture. The contracture observed in the presence of cyanide and 2-deoxy-D-glucose still occurred when Ca2+ was removed from the superfusate.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge