Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental and Therapeutic Medicine 2017-Jun

Effects of hypoxia on differentiation of menstrual blood stromal stem cells towards tenogenic cells in a co-culture system with Achilles tendon cells.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Yijing Zheng
Yifei Zhou
Xiaolei Zhang
Yuemiao Chen
Xuhao Zheng
Tao Cheng
Chaonan Wang
Xuqi Hu
Jianjun Hong

Paraules clau

Resum

Achilles tendons have a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for Achilles tendinitis includes the application of mesenchymal stem cells (MSCs), which have high proliferative and multipotent differentiation ability, and is a promising approach. The aim of the present study was to explore the tenogenic potential of human menstrual blood stromal stem cells (MenSCs) in a co-culture system and to compare the tenogenic capability under normoxic and hypoxic conditions. MenSCs were co-cultured indirectly with Achilles tendon cells in a Transwell co-culture system for 1, 2, or 3 weeks in two different concentrations of oxygen (20 and 2% O2), whereas the control contained only MenSCs. The extracellular matrix of MenSCs in each system was evaluated by Alcian blue staining assay, histological staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blot analysis. Alcian blue staining assay revealed a significant increase (P<0.05) in proteoglycan secretion by the differentiated MenSCs. Identical results were obtained by RT-qPCR for collagen I, which was validated by western blot analysis. Considerably increased collagen I and collagen III gene expression levels were exhibited by cells in the co-culture treatment group when compared with the control (P<0.05); however, no significant difference was detected between the normoxic (20% O2) and hypoxic treatment (2% O2) groups. RT-qPCR was utilized to determine the expression levels of thrombospondin 4, scleraxis and tenascin C in the differentiated MenSCs; a significant increase in the expression of these specific genes was indicated in the co-culture treatment group compared with the control (P<0.05). Although the expression levels were markedly higher in hypoxia than in normoxia conditions, this difference was not significant. To conclude, the present study indicated that MenSCs manifested a strong proliferative and multipotent capacity for differentiation and differentiated into Achilles tenogenic cells. Therefore, the use of MenSCs may be considered in Achilles tendinitis therapy.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge