Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biochemistry 2006-Oct

Hypercholesterolemia enhances tolerance to lethal systemic hypoxia in middle-aged mice: possible role of VEGF downregulation in brain.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Lei Xi
Shobha Ghosh
Xiaoyin Wang
Anindita Das
Frank P Anderson
Rakesh C Kukreja

Paraules clau

Resum

Hypercholesterolemia (HCL) is commonly associated with impaired vascular relaxation response and augmented vasoconstriction. Interestingly, it was shown that animals with HCL were less vulnerable to seizures and several clinical studies also revealed a better outcome after stroke in the patients with HCL. To this context, the present study was designed to test the hypothesis that HCL would enhance the animals' resistance to severe systemic hypoxia and in turn prolong their survival time under such noxious condition. Four groups of middle-aged (mean age: 51.1 +/- 2.8 weeks) male C57BL/6J wild-type mice (C57BL-WT) and low-density lipoprotein receptor knockout mice (LDLR-KO) were included in the study: two groups were exposed to severe normobaric hypoxia (5% F(I)O(2)) and other two groups were used for brain tissue sample collection and Western blot analysis. The survival time under the hypoxic condition was recorded for each animal. Individual blood samples were collected immedtately after the cessation of spontaneous breathing for measuring plasma total cholesterol (TCL) and triglycerides. The results show that the hypoxia survival time was longer in LDLR-KO than C57BL-WT (i.e. 3.7 +/- 0.5 versus 2.3 +/- 0.2 min; P < 0.05). A positive correlation was found between TCL and the survival time (r (2) = 0.43; P < 0.05). Furthermore, a significant downregulation of vascular endothelial growth factor (VEGF) was observed in the brain tissue of LDLR-KO, as compared with C57BL-WT (n, = 3/group; P < 0.05), whereas expression of heme oxygenase 1 was similar in these two groups. We conclude that HCL enhances resistance to lethal systemic hypoxia (i.e. 61% increase in survival time) in middle-aged mice. This paradoxical protective effect of HCL was associated with a concomitant downregulation of cerebral VEGF expression, which could potentially blunt the hypoxia-triggered and VEGF-mediated pathophysiological events leading to death.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge