Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurobiology of Learning and Memory 2014-Dec

Learning pain-related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Carolin Gramsch
Joswin Kattoor
Adriane Icenhour
Michael Forsting
Manfred Schedlowski
Elke R Gizewski
Sigrid Elsenbruch

Paraules clau

Resum

OBJECTIVE

There exists converging evidence to support a role of pain-related fear in the pathophysiology and treatment of chronic pain conditions. Pain-related fear is shaped by associative learning and memory processes, which remain poorly characterized especially in the context of abdominal pain such as in irritable bowel syndrome (IBS). Therefore, using event-related functional magnetic resonance imaging (fMRI), we assessed the neural mechanisms mediating the formation, extinction and reinstatement of abdominal pain-related fear in healthy humans. Employing painful rectal distensions as clinically-relevant unconditioned stimuli (US), in this fear conditioning study we tested if differential excitatory and inhibitory learning is evocable after very few CS-US learning trials ("rapid conditioning"), and explored the underlying neural substrates of these learning and memory processes.

METHODS

In N=24 healthy men and women, "rapid" fear acquisition was accomplished by pairing visual conditioned stimuli (CS(+)) with painful rectal distensions as unconditioned stimuli (US), while different visual stimuli (CS(-)) were presented without US (differential delay conditioning with five CS(+) and five CS(-) presentations and a 80% reinforcement ratio). During extinction, all CS were presented without US. Subsequently, a reinstatement procedure was implemented, defined as the retrieval of an extinguished memory after unexpected and unpaired exposure to the US, followed by CS presentations. For each phase, changes in perceived CS-US contingency and CS unpleasantness were assessed with visual analogue scales and compared with analyses of variance. fMRI data were analyzed using whole-brain analyses (at p<.001 uncorrected) and in regions-of-interest analyses with familywise error correction of alpha (pFWE<.05). Differential neural activation in response to the CS during each experimental phase (i.e., CS(+)>CS(-); CS(+)

RESULTS

A significant valence change (i.e. increased CS(+) unpleasantness) was observed following acquisition, indicating successful differential aversive learning. On the other hand, CS-US contingency awareness was not fully established. These behavioral results were paralleled by differential activation of the putamen (pFWE<.05), insula (pFWE<.05) and secondary somatosensory cortex (S2, p<.001 uncorrected) in response to the CS(+) during acquisition. The same analysis with a linear parametric modulation confirmed but also strengthened the resulting activations, which were all highly significant in ROI analyses at pFWE<.05. Extinction and reinstatement involved differential activation in response to the CS(-), involving the cingulate cortex and primary motor cortex (M1) during extinction and the posterior cingulate cortex (PCC) during reinstatement (all p<.001 uncorrected), without obvious effects upon linear parametric modulation analysis.

CONCLUSIONS

Abdominal pain stimuli are effective US that elicit conditioned pain-related fear even after very few learning experiences without full contingency awareness. These findings extend similar evidence of "rapid learning" in response to interoceptive US (e.g., conditioned taste aversion, conditioned nausea), and have implications for the pathophysiology and treatment of chronic abdominal pain such as in IBS.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge