Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Physics 2013-Feb

Lowest triplet (n, π*) electronic state of acrolein: determination of structural parameters by cavity ringdown spectroscopy and quantum-chemical methods.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Nikolaus C Hlavacek
Michael O McAnally
Stephen Drucker

Paraules clau

Resum

The cavity ringdown absorption spectrum of acrolein (propenal, CH(2)=CH-CH=O) was recorded near 412 nm, under bulk-gas conditions at room temperature and in a free-jet expansion. The measured spectral region includes the 0(0)(0) band of the T(1)(n, π*) ← S(0) system. We analyzed the 0(0)(0) rotational contour by using the STROTA computer program [R. H. Judge et al., J. Chem. Phys. 103, 5343 (1995)], which incorporates an asymmetric rotor Hamiltonian for simulating and fitting singlet-triplet spectra. We used the program to fit T(1)(n, π*) inertial constants to the room-temperature contour. The determined values (cm(-1)), with 2σ confidence intervals, are A = 1.662 ± 0.003, B = 0.1485 ± 0.0006, C = 0.1363 ± 0.0004. Linewidth analysis of the jet-cooled spectrum yielded a value of 14 ± 2 ps for the lifetime of isolated acrolein molecules in the T(1)(n, π*), v = 0 state. We discuss the observed lifetime in the context of previous computational work on acrolein photochemistry. The spectroscopically derived inertial constants for the T(1)(n, π*) state were used to benchmark a variety of computational methods. One focus was on complete active space methods, such as complete active space self-consistent field (CASSCF) and second-order perturbation theory with a CASSCF reference function (CASPT2), which are applicable to excited states. We also examined the equation-of-motion coupled-cluster and time-dependent density function theory excited-state methods, and finally unrestricted ground-state techniques, including unrestricted density functional theory and unrestricted coupled-cluster theory with single and double and perturbative triple excitations. For each of the above methods, we or others [O. S. Bokareva et al., Int. J. Quantum Chem. 108, 2719 (2008)] used a triple zeta-quality basis set to optimize the T(1)(n, π*) geometry of acrolein. We find that the multiconfigurational methods provide the best agreement with fitted inertial constants, while the economical unrestricted Perdew-Burke-Ernzerhof exchange-correlation hybrid functional (UPBE0) technique performs nearly as well.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge