Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 2002-Jun

Neuroblastoma cell-adapted yellow fever 17D virus: characterization of a viral variant associated with persistent infection and decreased virus spread.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Leonsia A Vlaycheva
Thomas J Chambers

Paraules clau

Resum

Serial passage of yellow fever 17D virus (YF5.2iv, derived from an infectious molecular clone) on mouse neuroblastoma (NB41A3) cells established a persistent noncytopathic infection associated with a variant virus. This virus (NB15a) was dramatically reduced in plaque formation and exhibited impaired replication kinetics on all cell lines examined compared to the parental virus. Nucleotide sequence analysis of NB15a revealed a substitution in domain III of the envelope (E) protein at residue 360, where an aspartic acid residue was replaced by glycine. Single mutations were also found within the NS2A and NS3 proteins. Engineering of YF5.2iv virus to contain the E(360) substitution yielded a virus (G360 mutant) whose plaque size and growth efficiency in cell culture resembled those of NB15a. Compared with YF5.2iv, both NB15a and G360 were markedly restricted for spread through Vero cell monolayers and mildly restricted in C6/36 cells. On NB41A3 cells, spread of the viruses was similar, but all three were generally inefficient compared with spread in other cell lines. Compared to YF5.2iv virus, NB15a was uniformly impaired in its ability to penetrate different cell lines, but a difference in cell surface binding was detected only on NB41A3 cells, where NB15a appeared less efficient. Despite its small plaque size, impaired growth, and decreased penetration efficiency, NB15a did not differ from YF5.2iv in mouse neurovirulence testing, based on mortality rates and average survival times after intracerebral inoculation of young adult mice. The data indicate that persistence of yellow fever virus in NB41A3 cells is associated with a mutation in the receptor binding domain of the E protein that impairs the virus entry process in cell culture. However, the phenotypic changes which occur in the virus as a result of the persistent infection in vitro do not correlate with attenuation during pathogenesis in the mouse central nervous system.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge