Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2019-Oct

Optimization of the traditional processing method for precision detoxification of CaoWu through biomimetic linking kinetics and human toxicokinetics of aconitine as toxic target marker.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Han Li
Jia Xu
Xiao Fan
Shan Wu

Paraules clau

Resum

CaoWu (Aconiti Kusnezoffii Radix), well known for its high toxicity leading to fatal ventricular arrhythmias, is detoxified by HeZi (Terminalia Chebula Retz) decoction to prepare ZhiCaoWu (Aconiti Kusnezoffii Radix Preparata) as one part of ingredients of NaRu-3 pill which is used for the treatment of rheumatoid arthritis (RA). Aconitine (AC) is a highly toxic alkaloid of CaoWu and it is used as toxic target marker for the quality control (QC) of ZhiCaoWu. In the traditional processing method, the vanish of astringent or spicy feeling in tongue is the important detoxification indicator of ZhiCaoWu. However, how CaoWu is detoxified to ZhiCaoWu and whether the appropriate content of AC in ZhiCaoWu can be efficiently perceived after the empirical detoxification still lack factual basis.The present study aimed to optimize the traditional processing method for precision detoxification of CaoWu through biomimetic linking kinetics and human toxicokinetics (TK) of AC, with a view of providing insights into the changes of toxic target marker.CaoWu medicinal slices (Mes) and coarse powder (Cop) were processed by blank HeZi decoction through the soaking method for 7 days. High-performance liquid chromatography (HPLC) was used for the analysis of the samples. The acidity of blank HeZi decoction and HeZi processing decoction was directly determined by pH meter. The non-compartment analysis (NCA) was used to have an intuitive appreciation for AC and pH changes in HeZi processing decoction while the compartment model method was used to build the biomimetic linking kinetics model with the covariate. The inter-species scaling of animal TK parameters was conducted to predict human AC TK profiles. The possible uptake ways of AC (rapid-release or extended-release) for humans were attempted to assess the poisoning risk of AC in NaRu-3 pill. Based on the target content of AC in ZhiCaoWu, the biomimetic linking kinetics model was explored to optimize the traditional processing detoxification method of CaoWu. The assays of determining inflammatory cytokines in lipopolysaccharides (LPS)-induced RAW264.7 cells were performed to investigate the inflammatory modulation effects of AC in vitro.ZhiCaoWu was prepared by eliminating redundant AC in CaoWu through the repeatable replacement of HeZi processing decoction in which its acidity (pH) was affected. AC-pH changes in HeZi processing decoction were adequately depicted by a biomimetic linking kinetics model whose predictive power was determined by comparing the predictions of AC in ZhiCaoWu with the reported data. Rapid-release AC at the converted dose of 111.1 and 417.6 μg (0.011 and 0.042% of AC in NaRu-3 pill) reached maximum blood concentrations of 26.1 and 98.1 ng/mL at 0.3 h, in comparison with minimum human lethal concentration (100 ng/mL). Achieving the target content of AC (0.04%) in ZhiCaoWu or AC (0.011%) in NaRu-3 pill to precisely control the poisoning risk, the potential optimized protocols were that the processing time at 0.2-0.8% of AC in CaoWu was 2.0-4.4 days for Cop and 2.7-6.2 days for Mes. Correspondingly, pH values in HeZi processing decoction were 3.95 and 3.77 for Cop and Mes, respectively. Meanwhile, Lipopolysaccharides (LPS)-induced RAW264.7 cells were exposed to 0, 20, and 200 μM of AC for 12 h and AC at 20 μM enhanced the levels of IL-6, IL-10 and TNF-α.Thus, for the first time, a biomimetic linking kinetics model was built to optimize the traditional detoxification method. Moreover, pH changes could be developed as surrogate endpoint for guiding the processing detoxification of CaoWu. Notably, setting the content limit of AC (0.011%) was very rational to control the poisoning risk of NaRu-3 pill. In addition, it was possible that there existed the more complex mechanisms of AC for inflammatory modulation in vitro.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge