Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
NeuroToxicology 2003-Dec

Perinatal exposure to polychlorinated biphenyls alters excitatory synaptic transmission and short-term plasticity in the hippocampus of the adult rat.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
M E Gilbert

Paraules clau

Resum

Developmental exposure to polychlorinated biphenyls (PCBs) has been associated with cognitive deficits in humans and laboratory animals. Previous work has demonstrated a reduced capacity to support long-term potentiation (LTP) in animals exposed to a PCB mixture, Aroclor 1254 (A1254) via the dam in utero and throughout the preweaning period [Brain Res. 850;1999:87-95; Toxicol. Sci. 57;2000:102-11]. Assessment of normalized input/output (I/O) functions collected prior to LTP induction failed to reveal consistent differences in baseline synaptic transmission between control and PCB-exposed groups. The present study was designed to systematically evaluate excitatory and inhibitory synaptic transmission using a more extensive I/O analysis and paired pulse functions to assess short-term plasticity. Pregnant Long-Evans rats were administered either corn oil (control) or 6 mg/kg per day of A1254 by gavage from gestational day (GD) 6 until pups were weaned on postnatal day (PND) 21. In adult male offspring (5-11 months of age), field potentials evoked by perforant path stimulation were recorded in the dentate gyrus under urethane anesthesia. Detailed I/O functions were assessed by averaging the responses evoked in the dentate gyrus to stimulus pulses delivered to the perforant path in an extensive ascending intensity series. Population spike (PS) and postsynaptic potential (PSP) amplitudes recorded in the dentate gyrus were significantly enhanced in PCB-exposed animals relative to controls at midrange intensities. No group differences were observed in EPSP slope amplitudes. Short-term plasticity was assessed by delivering pairs of stimulus pulses at interpulse intervals (IPIs) ranging from 10 to 70 ms. In the dentate gyrus this range of intervals activates both inhibitory and excitatory mechanisms leading to a pattern of depression at brief intervals (<30 ms) followed by facilitation as the interval between pulses is extended. Paired pulse depression was decreased at an intermediate IPI (30 ms) with submaximal stimulus intensities. These data augment previous work demonstrating persistent changes in hippocampal plasticity as a result of exposure to PCBs during development. Furthermore, as increases in field potential amplitudes were observed, these findings support previous conclusions that A1254-induced LTP deficits are not readily attributable to reductions in synaptic excitability. Thus, in addition to impairment in use-dependent synaptic plasticity reported previously, the present report reveals that basic components of information processing within the hippocampus are permanently altered as a result of perinatal exposure to PCBs.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge