Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
New Biotechnology 2012-Nov

Plant-microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Veronika Kurzawova
Petr Stursa
Ondrej Uhlik
Katarina Norkova
Martin Strohalm
Jan Lipov
Lucie Kochankova
Martina Mackova

Paraules clau

Resum

During the second half of the last century a large amount of substances toxic for higher organisms was released to the environment. Physicochemical methods of pollutant removal are difficult and prohibitively expensive. Using biological systems such as microorganisms, plants, or consortia microorganisms-plants is easier, cheaper, and more environmentally friendly. The aim of this study was to isolate, characterize and identify microorganisms from contaminated soil and to find out the effect of plants on microbial diversity in the environment. Microorganisms were isolated by two approaches with the aim to find all cultivable species and those able to utilise biphenyl as a sole source of carbon and energy. The first approach was direct extraction and the second was isolation of bacteria after enrichment cultivation with biphenyl. Isolates were biochemically characterized by NEFERMtest 24 and then the composition of ribosomal proteins in bacterial cells was determined by MALDI-TOF mass spectrometry. Ribosomal proteins can be used as phylogenetic markers and thus MALDI-TOF MS can be exploited also for taxonomic identification because the constitution of ribosomal proteins in bacterial cells is specific for each bacterial species. Identification of microorganisms using this method is performed with the help of database Bruker Daltonics MALDI BioTyper. Isolated bacteria were analyzed from the point of the bphA gene presence. Bacteria with detected bphA gene were then taxonomically identified by 16S rRNA sequence. The ability of two different plant species, tobacco (Nicotiana tabacum) and nightshade (Solanum nigrum), to accumulate PCBs was studied as well. It was determined that various plant species differ in the PCBs accumulation from the contaminated soil. Also the content of PCBs in various plant tissues was compared. PCBs were detected in roots and aboveground biomass including leaves and berries.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge