Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2018-Nov

Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Chen Guo
Tao Ren
Pengfei Li
Bin Wang
Jialong Zou
Saddam Hussain
Rihuan Cong
Lishu Wu
Jianwei Lu
Xiaokun Li

Paraules clau

Resum

Ammonia (NH3) volatilization and greenhouse gas (GHG) emission from rice (Oryza sativa L.) fields contaminate the atmospheric environment and lead to global warming. Field trials (2013-2015) were conducted to estimate the influences of different types of fertilization practices on grain yield, NH3 volatilization, and methane (CH4) and nitrous oxide (N2O) emissions in a double rice cropping system in Central China. Results showed that grain yields of rice were improved significantly by using slow/controlled-release urea (S/C-RU). Compared with farmers' fertilizer practice (FFP) treatment, average annual grain yield with application of polymer-coated urea (CRU), nitrapyrin-treated urea (CP), and urea with effective microorganism (EM) treatments was increased by 18.0%, 16.2%, and 15.4%, respectively. However, the effects on NH3 volatilization and CH4 and N2O emissions differed in diverse S/C-RU. Compared with that of the FFP treatment, the annual NH3 volatilization, CH4 emission, and N2O emissions of the CRU treatment were decreased by 64.8%, 19.7%, and 35.2%, respectively; the annual CH4 and N2O emissions of the CP treatment were reduced by 33.7% and 40.3%, respectively, while the NH3 volatilization was increased by 18.5%; the annual NH3 and N2O emissions of the EM treatment were reduced by 6.3% and 28.7%, while the CH4 emission was improved by 4.3%. Overall, CP showed the best emission reduction with a decrement of 34.3% in global warming potential (GWP) and 44.4% in the greenhouse gas intensity (GHGI), followed by CRU treatment with a decrement of 21.1% in GWP and 31.7% in GHGI, compared with that of the FFP treatment. Hence, it is suggested that polymer-coated urea can be a feasible way of mitigating NH3 volatilization and CH4 and N2O emission from rice fields while maintaining or increasing the grain yield in Chinese, the double rice cropping system.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge