Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2019-Feb

Responses of reactive oxygen species and methylglyoxal metabolisms to magnesium-deficiency differ greatly among the roots, upper and lower leaves of Citrus sinensis.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Yan-Tong Cai
Han Zhang
Yi-Ping Qi
Xin Ye
Zeng-Rong Huang
Jiu-Xin Guo
Li-Song Chen
Lin-Tong Yang

Paraules clau

Resum

BACKGROUND
Magnesium (Mg)-deficiency is one of the most prevalent physiological disorders causing a reduction in Citrus yield and quality. 'Xuegan' (Citrus sinensis) seedlings were irrigated for 16 weeks with nutrient solution containing 2 mM (Mg-sufficiency) or 0 mM (Mg-deficiency) Mg(NO3)2. Thereafter, we investigated the Mg-deficient effects on gas exchange and chlorophyll a fluorescence in the upper and lower leaves, and Mg, reactive oxygen species (ROS) and methylglyoxal (MG) metabolisms in the roots, lower and upper leaves. The specific objectives were to corroborate the hypothesis that the responses of ROS and MG metabolisms to Mg-deficiency were greater in the lower leaves than those in the upper leaves, and different between the leaves and roots.

Mg level was higher in the Mg-deficient upper leaves than that in the Mg-deficient lower leaves. This might be responsible for the Mg-deficiency-induced larger alterations of all the measured parameters in the lower leaves than those in the upper leaves, but they showed similar change patterns between the Mg-deficient lower and upper leaves. Accordingly, Mg-deficiency increased greatly their differences between the lower and upper leaves. Most of parameters involved in ROS and MG metabolisms had similar variation trends and degrees between the Mg-deficient lower leaves and roots, but several parameters (namely glutathione S-transferase, sulfite reductase, ascorbate and dehydroascorbate) displayed the opposite variation trends. Obviously, differences existed in the Mg-deficiency-induced alterations of ROS and MG metabolisms between the lower leaves and roots. Although the activities of most antioxidant and sulfur metabolism-related enzymes and glyoxalase I and the level of reduced glutathione in the Mg-deficient leaves and roots and the level of ascorbate in the leaves were kept in higher levels, the levels of malonaldehyde and MG and/or electrolyte leakage were increased in the Mg-deficient lower and upper leaves and roots, especially in the Mg-deficient lower leaves and roots.The ROS and MG detoxification systems as a whole did not provide sufficient detoxification capacity to prevent the Mg-deficiency-induced production and accumulation of ROS and MG, thus leading to lipid peroxidation and the loss of plasma membrane integrity, especially in the lower leaves and roots.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge