Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytomedicine 2020-Feb

β-Elemonic acid inhibits the growth of human Osteosarcoma through endoplasmic reticulum (ER) stress-mediated PERK/eIF2α/ATF4/CHOP activation and Wnt/β-catenin signal suppression.

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Ang Zhao
Zhanjie Zhang
Yanfen Zhou
Xin Li
Xiaotian Li
Bo
Qi Zhang

Paraules clau

Resum

Osteosarcoma (OS) is a significant threat to the lives of children and young adults. Although neoadjuvant chemotherapy is the first choice of treatment for OS, it is limited by serious side-effects and cancer metastasis. β-Elemonic acid (β-EA), an active component extracted from Boswellia carterii Birdw., has been reported to exhibit potential anti-inflammatory and anticancer activities. However, the anti-tumor effects and underlying mechanisms on OS as well as pharmacokinetic characteristics of β-EA remain unknown.This study was aimed to investigating the anti-tumor effects of β-EA on human OS, the underlying mechanisms, and the pharmacokinetic and tissue distribution characteristics.Cell viability and colony formation assays were performed to determine the effect of β-EA cell on cell proliferation. Apoptosis rates, mitochondrial membrane potential and cell cycle features were analyzed by flow cytometry. qRT-PCR, Western blot, immunofluorescence and immunohistochemical assays were conducted to evaluate the expression levels of genes or proteins related to the pathways affected by β-EA in vitro and in vivo. Cell migration and invasion were evaluated in wound healing and Transwell chamber assays. The effects and pharmacokinetic characteristics of β-EA in vivo were evaluated by analyzing tumor suppression, pharmacokinetics and tissue distribution.

RESULTS
Explorations indicated that endoplasmic reticulum (ER) stress conditions provoked by β-EA activated the PERK/eIF2α/ATF4 branch of the unfolded protein reaction (UPR), stimulating C/EBP homologous protein (CHOP)-regulated apoptosis and inducing Ca2+ leakage leading to caspase-dependent apoptosis. Furthermore, β-EA induced G0/G1 cell cycle arrest and inhibited metastasis of HOS and 143B cells by attenuating Wnt/β-catenin signaling effects, which included decreased levels of p-Akt(Ser473), p-Gsk3β (Ser9), Wnt/β-catenin target genes (c-Myc and CyclinD1) along with a decline in nuclear β-catenin accumulation. The fast absorption, short elimination half-life, and linear pharmacokinetic characteristics of β-EA were also revealed. The distribution of β-EA was detected in the tumor and bone tissues.

Overall, both in vitro and in vivo investigations showed the potential of β-EA for the treatment of human OS. The pharmacokinetic profile and considerable distribution in the tumor and bone tissues warrant further preclinical or even clinical studies.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge