Catalan
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2020-Aug

Exercise influences the impact of polychlorinated biphenyl exposure on immune function

Només els usuaris registrats poden traduir articles
Inicieu sessió / registreu-vos
L'enllaç es desa al porta-retalls
Mahesh Pillai
K Keylock
Howard Cromwell
Lee Meserve

Paraules clau

Resum

Polychlorinated biphenyls (PCBs) are environmental pollutants and endocrine disruptors, harmfully affecting reproductive, endocrine, neurological and immunological systems. This broad influence has implications for processes such as wound healing, which is modulated by the immunological response of the body. Conversely, while PCBs can be linked to diminished wound healing, outside of PCB pollution systems, exercise has been shown to accelerate wound healing. However, the potential for moderate intensity exercise to modulate or offset the harmful effects of a toxin like PCB are yet unknown. A key aim of the present study was to examine how PCB exposure at different doses (0, 100, 500, 1000 ppm i.p.) altered wound healing in exercised versus non-exercised subgroups of mice. We examined PCB effects on immune function in more depth by analyzing the concentrations of cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) in these wounds inflicted by punch biopsy. Mice were euthanized at Day 3 or Day 5 after PCB injection (n = 3-6) and skin excised from the wound area was homogenized and analyzed for cytokine content. Results revealed that wound healing was not signficantly impacted by either PCB exposure or exercise, but there were patterns of delays in healing that depended on PCB dose. Changes in cytokines were also observed and depended on PCB dose and exercise experience. For example, IL-1β concentrations in Day 5 mice without PCB administration were 33% less in exercised mice than mice not exercised. However, IL-1β concentrations in Day 3 mice administered 100 ppm were 130% greater in exercised mice than not exercisedmice. Changes in the other measured cytokines varied with mainly depressions at lesser PCB doses and elevations at higher doses. Exercise had diverse effects on cytokine levels, but increased cytokine levels in the two greater doses. Explanations for these diverse effects include the use of young animals with more rapid wound healing rates less affected by toxin exposure, as well as PCB-mediated compensatory effects at specific doses which could actually enhance immune function. Future work should examine these interactions in more detail across a developmental time span. Understanding how manipulating the effects of exposure to environemntal contaminants using behavioral modification could be very useful in certain high risk populations or exposed individuals.

Uneix-te a la nostra
pàgina de Facebook

La base de dades d’herbes medicinals més completa avalada per la ciència

  • Funciona en 55 idiomes
  • Cures a base d'herbes recolzades per la ciència
  • Reconeixement d’herbes per imatge
  • Mapa GPS interactiu: etiqueta les herbes a la ubicació (properament)
  • Llegiu publicacions científiques relacionades amb la vostra cerca
  • Cerqueu herbes medicinals pels seus efectes
  • Organitzeu els vostres interessos i estigueu al dia de les novetats, els assajos clínics i les patents

Escriviu un símptoma o una malaltia i llegiu sobre herbes que us poden ajudar, escriviu una herba i vegeu malalties i símptomes contra els quals s’utilitza.
* Tota la informació es basa en investigacions científiques publicades

Google Play badgeApp Store badge