Pàgina 1 des de 484 resultats
Various phospholipases are thought to be associated with the in vitro apoptosis of thymocytes. In the present study, the in vivo phospholipase D (PLD) activity of rat thymus was studied after whole-body X-irradiation or injection of dexamethasone (DEX). Using exogenous [14C]dipalmitoyl
Di-(2-ethylhexyl) phthalate (DEHP), a peroxisome proliferator-activated receptor alpha (PPARalpha) ligand, alters the lipid composition of rat testis, yet the mechanism is unclear. In this study, we investigated the effect of DEHP on the synthesis and metabolism of arachidonic acid (AA), a precursor
We provide evidence that two members of the intracellular phospholipase A(2) family, namely calcium-dependent group IVA (cPLA(2) GIVA) and calcium-independent group VIA (iPLA(2) GVIA) may play important roles in Wallerian degeneration in the mouse sciatic nerve. We assessed the roles of these
Antiserum raised against purified Crotalus adamanteus venom phospholipase A2 (PLA2) was used to localise the enzyme in normal and crushed sciatic nerve to determine the effect of nerve trauma on PLA2 distribution in the PNS. The tissue was Bouin's fixed, and stained immunohistochemically using the
Drosophila melanogaster phototransduction proceeds via a phospholipase C (PLC)-triggered cascade of phosphatidylinositol (PI) lipid modifications, many steps of which remain undefined. We describe the involvement of the lipid phosphatidic acid and the enzyme that generates it, phospholipase D (Pld),
Phospholipase A2 (PLA2) is proposed to play a role in the repair of the ruptured membrane after axotomy. In neonatal rats, we examined the effect of Group IIA secretory PLA2 (sPLA2-IIA) on axotomy-induced cell death of motoneurons. sPLA2-IIA significantly induced death of axotomized motoneurons.
Genetic ablation of calcium-independent phospholipase A(2)gamma (iPLA(2)gamma) results in profound alterations in hippocampal phospholipid metabolism and mitochondrial phospholipid homeostasis resulting in enlarged and degenerating mitochondria leading to autophagy and cognitive dysfunction. Shotgun
BACKGROUND
An early event in the neuropathology of prion and Alzheimer's diseases is the loss of synapses and a corresponding reduction in the level of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission. The molecular mechanisms involved in synapse degeneration in these
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were
Chronic binge alcohol exposure in adult rat models causes neuronal degeneration in the cortex and hippocampus that is not reduced by excitotoxic receptor antagonists, but is prevented by antioxidants. Neuroinflammatory (glial-neuronal) signaling pathways are believed to underlie the oxidative stress
The pathogenesis of prion diseases includes synapse degeneration and neuronal death. Here we report that pre-treatment with glucosamine-phosphatidylinositol (glucosamine-PI), a synthetic analogue of the glycosylphosphatidylinositol (GPI) anchor that attaches the prion protein (PrP(C)) to plasma
Calcium-independent phospholipase A2β (iPLA2β, PLA2G6) is essential for the remodeling of membrane glycerophospholipids. Mutations in this gene are responsible for autosomal recessive, young onset, L-dopa-responsive parkinsonism (PARK14), suggesting a neurodegenerative condition in the nigrostriatal
Phospholipase A(2) (PLA(2)) hydrolyzes phosphatidylcholine to lysophosphatidylcholine and arachidonic acid. The former can induce myelin breakdown and the latter, via eicosanoids, can stimulate inflammatory responses. Immunohistochemical analysis of secreted (sPLA(2)) and cytosolic (cPLA(2)) forms
Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disease characterized by the widespread presence of axonal swellings (spheroids) in the CNS and PNS and is caused by gene abnormality in PLA2G6 [calcium-independent phospholipase A(2)β (iPLA(2)β)], which is essential for remodeling
Local and systemic skeletal muscle degeneration is a common consequence of envenomations due to snakebites and mass bee attacks. Phospholipases A2 (PLA2) are important myotoxic components in these venoms, inducing a similar pattern of degenerative events in muscle cells. Myotoxic PLA2s bind to