Czech
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Evaluation of the Keratoconic Cornea After Corneal Collagen Cross Linking.

Články mohou překládat pouze registrovaní uživatelé
Přihlášení Registrace
Odkaz je uložen do schránky
PostaveníNábor
Sponzoři
Reham Mahmoud Abdelrahman

Klíčová slova

Abstraktní

Aim of work:
- To detect abnormal corneal thinning in keratoconus using pachymetry maps measured by high-speed anterior segment optical coherence tomography (OCT).
- To evaluate the visualization and depth of the demarcation line with anterior segment optical coherence tomography (AS-OCT) after corneal collagen cross-linking (CXL).
- To compare the depth of demarcation line between epithelial-on (Epi-on) and epithelial-off (Epi-off) corneal collagen cross-linking.

Popis

Keratoconus is a bilateral, asymmetric, progressive, non-inflammatory corneal ectatic disorder that is characterized by progressive thinning, steepening and potential scaring. Usually it affects the inferior or central cornea that becomes thinner and bulges forward in a cone-shaped fashion, inducing irregular astigmatism and myopia and reducing the quality of vision. Approximately 50% of clinically normal fellow eyes will progress to KC within 16 years. The greatest risk is during the first 6 years of the onset.

Annual incidence of KC also varies greatly from 0.002% , to 0.23% of 100,000 population per year. Most of the western studies support the lower figure of 0.002% , while in the Middle-East it is about 0.02 per year. In the middle-East, there is about ten-fold higher incidence (0.02% compared to 0.002%), and ten-fold higher prevalence (2.34% compared to 0.23%), as compared to Western counries.

Management of keratoconus depends on a variety of factors including visual acuity, the degree of corneal thinning and steepening. Rigid gas permeable contact lenses (RGPs) have been tried to correct corneal irregularity and astigmatism in keratoconus but they don't stop keratoconus progression. Corneal collagen cross linking (CXL) is now considered as the treatment of choice in mild to moderate cases of keratoconus and is proven to halt the disease progression. The implantation of intrastromal corneal ring segments (e.g. INTACS, Ferrara & Keraring) has been indicated for cases with moderate keratoconus to flatten the steep irregular corneas. Advanced cases of keratoconus with marked deterioration of vision or corneal scarring may be good candidates for deep anterior lamellar or penetrating Keratoplasty (DALK or PKP).

Collagen cross-linking (CXL) is a relatively new conservative approach for progressive corneal ectasia, which is able to strengthen corneal tissue reforming new covalent bonds. This strategy is based on the underlying pathology of the disease. Corneal collagen cross linking (CXL) idea was based on the fact that a photosensitizer substance like riboflavin (vitamin B2) can interact with ultraviolet irradiation (Ultraviolet-A) to strengthen the corneal tissue inter and intrafibrillar collagen bonds thus preventing further thinning, corneal protrusion and reduces corneal irregular astigmatism.

Epithelial debridement enhances riboflavin corneal penetration that allows absorption of wide range of light spectrum wave lengths including ultra violet A.

The idea of trans-epithelial delivery (Epi-on technique) of riboflavin into the corneal tissue was hindered by the fact that riboflavin can't penetrate intact corneal epithelium. The addition of certain molecules such as trometamol allows penetration of riboflavin into the corneal stroma that markedly reduces the possible complications of removing of the corneal epithelium (Epi-off technique) such as persistent epithelial defects, scarring and serious infectious keratitis. Another advantage of trans-epithelial CXL that it reduces the cytotoxic effects of ultraviolet irradiation on corneal endothelium and intraocular structures especially in thin corneas less than 400 um.

Recently, CXL techniques were developed to minimize ultraviolet exposure and shorten the time of the procedure on basis of photochemical reciprocity in which increased irradiation intensity with reduced intervals achieve the same effect of the conventional cross linking techniques.

Corneal collagen cross linking induces stromal collagen fiber shrinkage. Ultraviolet A exposure enhances covalent bond formation between collagen fibers especially in the anterior stroma where 65% of ultraviolet irradiation is absorbed within first 250 um thus a hyperrefelctive transitional area can be detected between the anterior cross linked and the posterior untreated corneal stromal tissue referred to as a demarcation line that is usually evident 1 - 6 months after CXL procedure.

A comprehensive slit lamp examination could detect the demarcation line; however anterior segment ocular coherence tomography (AS-OCT) is a more sensitive tool to assess the extent and depth of a stromal demarcation line that is deeper centrally than peripherally due to the natural corneal curvature.

Several studies confirm the effectiveness and safety of conventional cross-linking procedure, which is also known as "Dresden protocol", in which the interaction between 0.1% riboflavin molecules absorbed in corneal tissue and UV-A rays delivered at 3 mW/cm2 for 30 minutes (5.4 J/cm2 energy dose) releases reactive oxygen species that promote the formation of "molecular bridges" between and within collagen fibers.

Corneal cross-linking causes a dose-dependent keratocytes damage. Wollensak et al. described cellular apoptosis to a depth of 300 µm radiating with UV- A at 3 mW/cm2. Histopathological studies showed an already complete keratocyte apoptosis limited to the anterior stroma within 24 hours. Some authors characterized the corneal stromal DL as a clinical sign to evaluate the depth of the CXL treatment.

Some studies hypothesize the role of the DL after CXL depth as representative of CXL effectiveness. Recently, the essential debate focused on whether the depth of the corneal stromal DL is indeed a true indicator of CXL efficacy. The main question is whether "the deeper, the better" principle can be applied to CXL.

In recent years, anterior segment optical coherence tomography (AS-OCT) and confocal microscopy have been used as tools to assess the depth of DL and consequently the depth of the cross-linking effect. By using the AS-OCT, the stromal DL is detected within an enhanced image of the cornea in the horizontal meridian. The image is captured when the corneal reflex is visible, and the depth of DL is measured using the caliper tool provided by the manufacturer. Doors et al described the best visibility of corneal stromal DL using AS-OCT at 1 month after CXL treatment, with an average DL depth of 313 µm; Yam et al measured the depth of DL at 6 months highlighting that the severity of ectasia and age may cause a worse DL visibility.

Termíny

Poslední ověření: 02/28/2019
První předloženo: 03/12/2019
Odhadovaná registrace vložena: 03/13/2019
První zveřejnění: 03/17/2019
Poslední aktualizace byla odeslána: 03/16/2019
Poslední aktualizace zveřejněna: 03/18/2019
Aktuální datum zahájení studie: 09/30/2016
Odhadované datum dokončení primární: 03/31/2019
Odhadované datum dokončení studie: 05/29/2019

Stav nebo nemoc

Keratoconus

Intervence / léčba

Procedure: Accelerated corneal collagen cross linking

Fáze

-

Skupiny zbraní

PažeIntervence / léčba
Active Comparator: Group 1 (Epithelium-off accelerated CXL)
patients with corneal thickness > 400 µm (thinnest location) were assigned into Epi-off accelerated CXL procedure
Active Comparator: Group 2 (Epithelium-on accelerated CXL)
patients with corneal thickness > 380 µm and < 400 µm thinnest location) were assigned into Epi-on Trans-epithelial accelerated CXL procedure

Kritéria způsobilosti

Věky způsobilé ke studiu 15 Years Na 15 Years
Pohlaví způsobilá ke studiuAll
Přijímá zdravé dobrovolníkyAno
Kritéria

Inclusion Criteria:

- Patients with progressive keratoconus (maximum K-reading between 46 diopters and 56 diopters), clear cornea and corneal pachymetry > 380um.

Exclusion Criteria:

- Corneal scarring.

- Advanced keratoconus (k-max > 56 D).

- Corneal pachymetry (thinnest location) < 380 µm.

- Epithelial healing disorders e.g.

- Recurrent corneal erosion syndrome.

- History of diseases that may delay corneal healing or predispose the eye for future complications (e.g. rheumatic disorders, glaucoma, uveitis, chemical burn, corneal dystrophy).

- History suggestive of herpetic keratitis because the UVR can activate herpes virus.

- Post-LASIK ectasia and/or previous corneal surgeries e.g. intrastromal corneal ring segments (INTACS).

- Pregnancy and breast-feeding.

Výsledek

Primární výsledná opatření

1. Demarcation line (DL) depth [3 months post corneal collagen cross linking]

DL is a hyper-reflectivity seen in the anterior corneal stroma between the crossed and non-crossed collagen stromal bundles using anterior segment optical coherence tomography.

2. Change in maximum keratometry (K-max) in diopters (D) [preoperative, 6 months and 12 months postoperative]

to compare preoperative values of K-max with values at both 6 and 12 months follow up visits.

3. Change in central corneal thickness in (µm) [preoperative, 6 months and 12 months postoperative]

using anterior segment OCT

Měření sekundárních výsledků

1. Change in visual acuity [preoperative, 6 months and 12 months postoperative]

uncorrected and best corrected visual acuity

2. Change in the mean refractive spherical equivalent (MRSE) [preoperative, 6 months and 12 months postoperative]

in diopters (D)

3. Change in pachymetry at the thinnest location [preoperative, 6 months and 12 months postoperative]

Corneal thickness at the thinnest location

Připojte se k naší
facebookové stránce

Nejúplnější databáze léčivých bylin podložená vědou

  • Funguje v 55 jazycích
  • Bylinné léky podporované vědou
  • Rozpoznávání bylin podle obrázku
  • Interaktivní mapa GPS - označte byliny na místě (již brzy)
  • Přečtěte si vědecké publikace související s vaším hledáním
  • Hledejte léčivé byliny podle jejich účinků
  • Uspořádejte své zájmy a držte krok s novinkami, klinickými testy a patenty

Zadejte symptom nebo chorobu a přečtěte si o bylinách, které by vám mohly pomoci, napište bylinu a podívejte se na nemoci a příznaky, proti kterým se používá.
* Všechny informace vycházejí z publikovaného vědeckého výzkumu

Google Play badgeApp Store badge