Czech
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the Mechanical Behavior of Biomedical Materials 2019-Oct

Mechanical and biocorrosive properties of magnesium-aluminum alloy scaffold for biomedical applications.

Články mohou překládat pouze registrovaní uživatelé
Přihlášení Registrace
Odkaz je uložen do schránky
Kicheol Hong
Hyeji Park
Yunsung Kim
Michal Knapek
Peter Minárik
Kristián Máthis
Akiko Yamamoto
Heeman Choe

Klíčová slova

Abstraktní

This study investigates the morphology, microstructure, compressive behavior, biocorrosion properties, and cytocompatibility of magnesium (Mg)-aluminum (Al) alloy (AE42) scaffolds for their potential use in biodegradable biomedical applications. Mg alloy scaffolds were successfully synthesized via a camphene-based freeze-casting process with precisely controlled heat treatment. The average porosity was approximately 52% and the median pore diameter was ∼13 μm. Salient deformation mechanisms were identified using acoustic emission (AE) signals and adaptive sequential k-means (ASK) analysis. Twinning, dislocation slip, strut bending, and collapse were dominant during compressive deformation. Nonetheless, the overall compressive behavior and deformation mechanisms were similar to those of bulk Mg based on ASK analysis. The corrosion potential of the Mg alloy scaffold (-1.44 V) was slightly higher than that of bulk AE42 (-1.60 V), but the corrosion rate of the Mg alloy scaffold was faster than that of bulk AE42 due to the enhanced surface area of the Mg alloy scaffold. As a result of cytocompatibility evaluation following ISO10993-5, the concentration of the Mg alloy scaffold extract reducing cell growth rate to 50% (IC50) was 10.7%, which is higher (less toxic) than 5%, suggesting no severe inflammation by implantation into muscle.

Připojte se k naší
facebookové stránce

Nejúplnější databáze léčivých bylin podložená vědou

  • Funguje v 55 jazycích
  • Bylinné léky podporované vědou
  • Rozpoznávání bylin podle obrázku
  • Interaktivní mapa GPS - označte byliny na místě (již brzy)
  • Přečtěte si vědecké publikace související s vaším hledáním
  • Hledejte léčivé byliny podle jejich účinků
  • Uspořádejte své zájmy a držte krok s novinkami, klinickými testy a patenty

Zadejte symptom nebo chorobu a přečtěte si o bylinách, které by vám mohly pomoci, napište bylinu a podívejte se na nemoci a příznaky, proti kterým se používá.
* Všechny informace vycházejí z publikovaného vědeckého výzkumu

Google Play badgeApp Store badge