Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Hyperthermia

Acute extracellular acidification increases nuclear associated protein levels in human melanoma cells during 42 degrees C hyperthermia and enhances cell killing.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
J-S Han
C W Storck
P R Wachsberger
D B Leeper
D Berd
M L Wahl
R A Coss

Nøgleord

Abstrakt

Acute acidification is being investigated as a strategy to sensitize human melanoma to 42 degrees C hyperthermia. The present study was conducted to determine the effect of hyperthermia and acute extracellular acidification on the nuclear associated protein (NAP) levels, heat shock protein (hsp) 70 and hsp27 content, and cell survival of human melanoma cells cultured at pH 7.3 or pH 6.7. It was observed that NAP levels increased slightly in both populations after 2 h of heating and then decreased to control levels with increasing time of heating at the growth pH. However, the NAP levels continued to increase in cells acutely acidified to pH 6.3 prior to and during heating. Hsp70 was induced to comparable levels in cells heated at their growth pH; however, the hsp27 levels were greater in cells cultured and heated at pH 6.7 than in cells cultured and heated at pH 7.3. Acute acidification to pH 6.3 prior to and during heating suppressed the 42 degrees C induction of hsp70 and hsp27 in both cell populations. The melanoma cells cultured and heated at pH 6.7 were more resistant to cell killing than cells cultured and heated at pH 7.3. Both populations were sensitized to cell killing by acute acidification to pH 6.3. The results suggest that hsps induced during 42 degrees C treatment associate with aggregating NAPs, enhancing their detergent solubility, and that abrogation of induced expression of hsps during heating at pH 6.3 contributes to increased levels of insoluble NAPS. In conclusion, acute extracellular acidification inhibits 42 degrees C induction of hsps, increases NAP levels, and decreases cell survival in DB-1 human melanoma cells.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge