Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biotechnology 2001-Aug

Analysis of retted and non retted flax fibres by chemical and enzymatic means.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
C Mooney
T Stolle-Smits
H Schols
E de Jong

Nøgleord

Abstrakt

Flax fibres (Linum usitatissimum L.) were subjected to chemical and enzymatic analysis in order to determine the compositional changes brought about by the retting process and also to determine the accessibility of the fibre polymers to enzymatic treatment. Chemical analysis involved subjecting both retted and non retted fibres to a series of sequential chemical extractions with 1% ammonium oxalate, 0.05 M KOH, 1 M KOH and 4 M KOH. Retting was shown to cause minimal weight loss from the fibres but caused significant changes to the pectic polymers present. Retted fibres were shown to have significantly lower amounts of rhamnogalacturonan as well as arabinan and xylan. In addition the average molecular mass of the pectic extracts was considerably lowered. Enzyme treatment of the 1 M KOH extracts with two different enzymes demonstrated that the non retted extract contained a relatively high molecular weight xylan not found in the retted extract. Treatment of the 1 M KOH extracts and the fibres with Endoglucanase V from Trichoderma viride demonstrated that while this enzyme solubilised cellulose as well as xylan and xyloglucan oligomers from the extract, it had limited access to these polymers on the fibre. MALDI-TOF MS analysis of the material solubilised from the extract suggested that the xylan was randomly substituted with 4-O-methyl glucuronic acid moieties. The xyloglucan was shown to be of the XXXG type and was substituted with galactose and fucose units. The enzyme treatments of the fibres demonstrated that the xylan and xyloglucan polymers in the fibres were not accessible to the enzyme but that material which was entrapped by the cellulose could be released by the hydrolysis of this cellulose.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge