Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Oecologia 1999-Aug

Carbohydrate storage and use in an alpine population of the perennial herb, Oxytropis sericea.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Tomasz Wyka

Nøgleord

Abstrakt

I tested hypotheses for ecological roles of storage carbohydrates in perennating organs (roots and branches) of alpine Oxytropis sericea, a leguminous herb. In naturally growing plants, total nonstructural carbohydrates achieved their maximal concentration in the fall, declined during winter, and reached minimal levels immediately after growth initiation in the spring. Experimental manipulation of carbon sink-source relations through shading of leaves of reproductive plants revealed that the normally unused portion of these carbohydrates is largely available for withdrawal. In another experiment, plants subjected to carbohydrate depletion through shading suffered decreased leaf growth after winter dormancy and had a lower probability of flowering and decreased inflorescence biomass. The dependence of reproductive growth on stored carbohydrates, however, was limited to its initial stages, because accumulation of storage carbohydrates occurred simultaneously with inflorescence expansion, flowering, and fruiting. Moreover, the whole-plant photosynthetic rate, estimated from gas exchange measurements also peaked at the time of inflorescence growth. To address whether stored reserves allow compensatory regrowth following defoliation, plants were subjected to experimental removal of leaves and inflorescences. Defoliated O. sericea partly regrew the lost leaves but withdrawal of stored carbohydrates was limited. Similarly, in a second defoliation experiment where infructescences were left intact, the plants used little stored carbohydrate and only partly compensated for fruit growth. However, carbohydrate accumulation was negatively affected by defoliation. While the ecological importance of stored nonstructural carbohydrates cannot be attributed to any function in isolation, winter respiration, leaf regrowth after winter, and early reproductive growth in O. sericea all depend to a significant extent on stored reserves. Maintaining a large storage pool may protect these functions in years when carbon status is less favorable than during this study.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge