Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Botany 2007-Oct

Chill-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Yanhong Zhou
Lifeng Huang
Yili Zhang
Kai Shi
Jingquan Yu
Salvador Nogués

Nøgleord

Abstrakt

OBJECTIVE

Chilling results in a significant decrease in Rubisco content and increased generation of reactive oxygen species (ROS) in cucumber (Cucumis sativus), a chilling-sensitive species. The role of roots in the regulation of the tolerance is unknown. Here, cucumber plants grafted onto figleaf gourd (Cucurbita ficifolia), a chilling-tolerant species were used to study the role of roots in the regulation of shoot functioning and the associated root-to-shoot communication.

METHODS

Gas exchange and chlorophyll fluorescence were measured using an infrared gas analyser combined with a pulse amplitude fluorimeter during chilling at 14 degrees C or 7 degrees C and subsequent recovery. At the same time, Rubisco content and activity and ROS generation were spectrophotometrically assayed. Abscisic acid and cytokinin concentrations in xylem sap were also determined by enzyme-linked immunosorbent assay.

CONCLUSIONS

Grafted plants showed a significantly higher light-saturated rate of CO(2) assimilation (A(sat)) than own-rooted plants when roots were gradually cooled, but no differences were detected when shoots were cooled. Chill at 7 degrees C irreversibly reduced A(sat), and significantly decreased maximum carboxylation activity, Rubisco content and initial Rubisco activity. However, grafted plants showed weaker inhibition, together with decreased electron flux in the water-water cycle. Higher activity of antioxidant enzymes with less ROS production was found in grafted plants. In addition, ABA concentration increased by 48.4-fold whilst cytokinin concentration decreased by 91.5% in the xylem sap of own-rooted plants after exposure to a 7 degrees C chill. In comparison, ABA and cytokinin concentrations increased by 10.5-fold and 36.9%, respectively, for the grafted plants. Improved plant growth was also observed in grafted plants after the chill. These results suggest that some signals coming from chilling-resistant roots (i.e. ABA and cytokinins) protect leaf photosynthesis in shoots of chilling-sensitive plants.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge