Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Food Microbiology 2017-Nov

Combination of essential oil compounds and phenolic acids against Escherichia coli O157:H7 in vitro and in dry-fermented sausage production.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Natan V B Meira
Richard A Holley
Keliani Bordin
Renata E F de Macedo
Fernando B Luciano

Nøgleord

Abstrakt

Escherichia coli O157:H7 is a foodborne pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. The low dose of infection and severity of the disease represent a concern to public health. Natural compounds have been widely applied as food additives to replace synthetic preservatives. The aim of this study was to determine the efficiency of essential oil compounds (EOCs) in combination with phenolic acids (PA) in vitro and in dry-fermented sausage production. Minimum Inhibitory Concentration (MIC) and Fractional Inhibitory Concentration index (FICindex) were determined for a 5-strain mixture of E. coli O157:H7. Batches of sausage tainted with E. coli O157:H7 were produced using Pediococcus pentosaceus UM 116P and Staphylococcus carnosus UM 123M as starter cultures. The best combination of EOCs and PAs found in vitro was used as an additive. Chemical-physical and microbiological analyses were evaluated weekly from day 0 to 35 after production. Sensory evaluation (texture, odor, flavor, appearance and overall evaluation) of E. coli-free sausages was conducted using a 9-point hedonic scale with 56 untrained volunteers. The MIC values of allyl isothiocyanate (AITC), carvacrol (CAR), ferulic acid (FA), o-coumaric acid (CA) and p-hydroxybenzoic acid (AHB) were, respectively, 0.25; 1.3; 5.12; 18.27; and 37mM. AITC combined with CA had a synergistic effect (FICindex=0.25) and together they were applied in the production of dry fermented sausage at concentrations of 10× FIC and 20× FIC. Aw had no significant difference among treatments, whereas the pH of 10× FIC and 20× FIC were higher than the control. E. coli O157:H7 was reduced by >5logCFU/g with 20× FIC after 21d, and by 2.8logCFU/g with 10× FIC after 35d. Sensory analysis showed that the combination of AITC and ο-coumaric acid in both treatments presented lower scores in the 5 categories when compared to the control, but none of the parameters received a negative score. This study demonstrated that the combination of AITC and ο-coumaric acid at 20× FIC reduced E. coli O157:H7 in compliance with the North American legislation, but adjustments in the dose are necessary to improve the sensory characteristics of the final product.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge