Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2008-Sep

Effects of prolonged restriction in water supply on photosynthesis, shoot development and storage root yield in sweet potato.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Philippus Daniel Riekert van Heerden
Robert Laurie

Nøgleord

Abstrakt

Besides the paucity of information on the effects of drought stress on photosynthesis and yield in sweet potato [Ipomoea batatas (L.) Lam.], available reports are also contradictory. The aim of this study was to shed light on the effects of long-term restricted water supply on shoot development, photosynthesis and storage root yield in field-grown sweet potato. Experiments were conducted under a rainout shelter where effects of restricted water supply were assessed in two varieties (Resisto and A15). Large decreases in stomatal conductance occurred in both varieties after 5 weeks of treatment. However, continued measurements revealed a large varietal difference in persistence of this response and effects on CO(2) assimilation. Although restricted water supply decreased leaf relative water content similarly in both varieties, the negative effects on stomatal conductance disappeared with time in A15 (indicating high drought acclimation capacity) but not in Resisto, thus leading to inhibition of CO(2) assimilation in Resisto. Chlorophyll a fluorescence measurements, and the relationship between stomatal conductance, intercellular CO(2) concentration and CO(2) assimilation rate, indicated that drought stress inhibited photosynthesis primarily through stomatal closure. Although yield loss was considerably larger in Resisto, it was also reduced by up to 60% in A15, even though photosynthesis, expressed on a leaf area basis, was not inhibited in this variety. In A15 yield loss appears to be closely associated with decreased aboveground biomass accumulation, whereas in Resisto, combined effects on biomass accumulation and photosynthesis per unit leaf area are indicated, suggesting that research aimed at improving drought tolerance in sweet potato should consider both these factors.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge