Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Plant Physiology 2004-Oct

Engineered sorbitol accumulation induces dwarfism in Japanese persimmon.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Michihito Deguchi
Yoshiko Koshita
Mei Gao
Ryutaro Tao
Takuya Tetsumura
Shohei Yamaki
Yoshinori Kanayama

Nøgleord

Abstrakt

A cDNA encoding sorbitol-6-phosphate dehydrogenase (S6PDH), which is a key enzyme in sorbitol biosynthesis in Rosaceae, was introduced into the Japanese persimmon (Diospyros kaki) to increase the environmental stress tolerance. Resultant transformants exhibited salt-tolerance with dwarfing phenotypes. Therefore, we studied two transgenic lines to understand the physiological mechanism of this dwarfism: lines PS1 and PS6 accumulated high and moderate levels of sorbitol, respectively. The average length of shoots was significantly shorter as compared with the wild-type in line PS1, while no such decrease was observed in line PS6. The myo-inositol and glucose 6-phosphate (G6P) contents were measured in the transgenic lines because previous work with tobacco transformed with S6PDH had suggested that growth inhibition was due to depletion of these metabolites. Although the myo-inositol content was decreased in PS1 plants, the decrease was much smaller than that observed in transgenic tobacco that accumulates sorbitol. The G6P contents were the same in PS1 plants and phenotypically normal PS6 plants. The level of indole-3-acetic acid (IAA), which affects stem elongation, in line PS1 was similar to the levels in the other lines. A decrease in gibberellin (GA) content generally induces dwarfism in plants. However, GA was not decreased in PS1 plants compared with wild-type or control plants. Therefore, we focused on sorbitol accumulation as the most remarkable feature of PS1 plants. As one possibility, the observed growth inhibition was likely caused by an osmotic imbalance between the cytosol and vacuole.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge