Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacology 2019

Epigallocatechin-3-Gallate Attenuates Adriamycin-Induced Focal Segmental Glomerulosclerosis via Suppression of Oxidant Stress and Apoptosis by Targeting Hypoxia-Inducible Factor-1α/ Angiopoietin-Like 4 Pathway.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Guoyong Liu
Liyu He

Nøgleord

Abstrakt

Focal and segmental glomerular sclerosis (FSGS) is a common cause of nephrotic syndrome and end-stage renal disease. It has been reported that overproduction of reactive oxygen species (ROS) and cell apoptosis are associated with the development of FSGS. Epigallocatechin-3-gallate (EGCG) is a bioactive constituent accounting for more than 50% of the total catechins in green tea, which have anti-oxidative and anti-apoptotic effects. Based on this, this study was designed to evaluate the renoprotective effect of EGCG treatment on Adriamycin-induced FSGS. -Methods: In C57BL/6 mice, Adriamycin nephropathy (AN) was induced by Adriamycin (10 mg/kg body weight, diluted in normal saline) via a tail vein on day 0. Then the mice were given with EGCG (20 mg/kg body weight) or YC-1 (Lificiguat, a specific inhibitor of hypoxia-inducible factor-1α [HIF-1α], 50 mg/kg body weight) or both intraperitoneally. Both the EGCG and YC-1 were given on the day of Adriamycin injection and continued for 6 weeks. The animals were organized into the following 5 groups for the animal experiments: the control group, the AN group, the AN + EGCG group, the AN + YC-1 group and the AN + EGCG + YC-1 group. At 6 weeks, the mice were sacrificed; kidneys and blood samples were collected for further analysis. The HIF-1α and the angiopoietin-like 4 (ANGPTL4) expression were detected by Western blot, real-time PCR, immunohistochemistry or immunofluorescence. Dihydroethidium staining and NADPH oxidase 1 (Nox1) measurement were used to detect ROS production. Terminal deoxynucleotide transferase-mediated dUTP nick end-labeling (TUNEL) staining and caspase-3 measurement was used to detect cell apoptosis.When the animals were treated with Adriamycin, both the ROS production and TUNEL positive cells increased. Besides, the expression of HIF-1α, ANGPTL4, and caspase-3 were also up-regulated, while EGCG treatment could attenuate these changes. Interestingly, compared with treatment with YC-1 or EGCG alone, more pronounced inhibition of ANGPTL4, caspase-3 and Nox1 were obtained when YC-1 and EGCG were administered simultaneously.EGCG attenuates FSGS through the suppression of Oxidant Stress and apoptosis by targeting the HIF-1α/ANGPTL4 pathway.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge