Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2015-Mar

Hepatotoxic assessment of Polygoni Multiflori Radix extract and toxicokinetic study of stilbene glucoside and anthraquinones in rats.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Jiang Ma
Li Zheng
Yi-Sheng He
Hui-Jun Li

Nøgleord

Abstrakt

BACKGROUND

Polygoni Multiflori Radix (PMR) has been traditionally used as a tonic and an anti-aging remedy for centuries; however, hepatic lesions linked to PMR have been frequently reported.

OBJECTIVE

This work attempted to investigate the hepatotoxic potential of PMR extract and the toxicokinetics of stilbene glucoside and anthraquinones in PMR extract following repeated administration.

METHODS

Histopathological and biochemical tests were performed to assess the hepatotoxicity of PMR extract. A rapid and sensitive liquid chromatography-mass spectrometry (LC-MS) assay was developed for toxicokinetic analysis of the main constituents of PMR extract, including 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), emodin-8-O-β-D-glucoside and emodin.

RESULTS

The histopathological and biochemical tests indicated that repeated administration of high-dose PMR extract (20 g/kg) for 3 weeks could cause hepatic lesions, while the low-dose treatment (1 g/kg) was safe. Necrosis and steatosis of hepatic cells, inflammatory cell infiltration and mild fibrosis were the main toxicity symptoms caused by high-dose PMR extract in rat liver. The aspartate aminotransferase (AST) levels increased by approximately 17%, from 110.80±0.84 to 129.75±10.83 IU/L, in the high-dose group compared with the control group. The proposed LC-MS method was proven to be suitable for the simultaneous quantification of these three constituents by affording desirable linearity (r(2)>0.998) and satisfactory precision (error less than 10%). The toxicokinetic study showed that emodin could not be detected in the low-dose group, but the AUC and Cmax of emodin displayed a gradual increase with repeated treatments in the high-dose group. The toxicokinetics of TSG in the low- and high-dose groups exhibited similar trends after repeated administration.

CONCLUSIONS

Consideration needs to be given to the rational application of PMR in the clinic to balance its benefits and risks. The increased emodin exposure in vivo provided a putative explanation for the observed hepatic lesions induced by PMR extract, although further studies to confirm the potentially causal link between emodin exposure and hepatic lesions are still necessary.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge