Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Neurology 2017

Hydrogen Sulfide Mediating both Excitatory and Inhibitory Effects in a Rat Model of Meningeal Nociception and Headache Generation.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Christiane Teicher
Roberto De Col
Karl Messlinger

Nøgleord

Abstrakt

OBJECTIVE

Hydrogen sulfide (H2S) is a neuromodulator acting through nitroxyl (HNO) when it reacts with nitric oxide (NO). HNO activates transient receptor potential channels of the ankyrin type 1 (TRPA1) causing release of calcitonin gene-related peptide from primary afferents. Activation of meningeal nociceptors projecting to the human spinal trigeminal nucleus (STN) may lead to headaches. In a rat model of meningeal nociception, the activity of spinal trigeminal neurons was used as read-out for the interaction between H2S and NO.

METHODS

In anesthetized rats extracellular recordings from single neurons in the STN were made. Sodium sulfide (Na2S) producing H2S in the tissue and the NO donor diethylamine-NONOate (DEA-NONOate) were infused intravenously. H2S was also locally applied onto the exposed cranial dura mater or the medulla. Endogenous production of H2S was inhibited by oxamic acid, and NO production was inhibited by nitro-l-arginine methyl ester hydrochloride (l-NAME) to manipulate endogenous HNO formation.

RESULTS

Systemic administration of Na2S was followed either by increased ongoing activity (in 73%) or decreased activity (in 27% of units). Topical application of Na2S onto the cranial dura mater caused a short-lasting activation followed by a long-lasting decrease in activity in the majority of units (70%). Systemic administration of DEA-NONOate increased neuronal activity, subsequent infusion of Na2S added to this effect, whereas DEA-NONOate did not augment the activity after Na2S. The stimulating effect of DEA-NONOate was inhibited by oxamic acid in 75% of units, and l-NAME following Na2S administration returned the activity to baseline.

CONCLUSIONS

Individual spinal trigeminal neurons may be activated or (less frequently) inhibited by the TRPA1 agonist HNO, presumably formed by H2S and NO in the STN, whereby endogenous H2S production seems to be rate-limiting. Activation of meningeal afferents by HNO may induce decreased spinal trigeminal activity, consistent with the elevation of the electrical threshold caused by TRPA1 activation in afferent fibers. Thus, the effects of H2S-NO-TRPA1 signaling depend on the site of action and the type of central neurons. The role of H2S-NO-TRPA1 in headache generation seems to be ambiguous.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge