Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2017-Sep

In vitro protein synthesis of sugar beet (Beta vulgaris) and maize (Zea mays) is differentially inhibited when potassium is substituted by sodium.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Franziska Faust
Sven Schubert

Nøgleord

Abstrakt

The substitution of potassium ions (K+) by sodium ions (Na+) in the nutrition of plants is restricted. It was shown earlier that net protein synthesis is the process which is most sensitive to the substitution of K+ by Na+ in young sugar beet. We hypothesized that the activity of ribosomes is inhibited by the substitution. This hypothesis was tested in an in vitro approach. Cytosolic polysomes were isolated from growing leaves of sugar beet and maize by means of differential centrifugation. In vitro systems of both plant species were tested for functionality and comparability. Translation was quantified by the 35S-methionine incorporation in TCA-precipitable products. The effect of different substitution levels (0%, 20%, 40%, 60%, and 80% substitution of K+ by Na+) on in vitro translation was measured. Translation by polysomes of both plant species was significantly inhibited by the substitution. However, the translation by maize polysomes was more negatively affected by the substitution. A significant decrease in the translation by maize polysomes was observed already when 20% of K+ were replaced by Na+, whereas in the case of sugar beet, the translation was inhibited firstly at the substitution level of 40%. The in vitro results show that the process of translation itself is disturbed by the substitution and indicate a higher tolerance of sugar beet polysomes to increased Na+ concentrations and Na+/K+ ratios compared to polysomes of maize. We propose that this tolerance contributes to the salt resistance of sugar beet.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge