Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Lipids in Health and Disease 2017-Aug

Metabolomics study of the therapeutic mechanism of Schisandra Chinensis lignans in diet-induced hyperlipidemia mice.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Jing-Hui Sun
Xu Liu
Li-Xin Cong
He Li
Cheng-Yi Zhang
Jian-Guang Chen
Chun-Mei Wang

Nøgleord

Abstrakt

BACKGROUND

Schisandra, a globally distributed plant, has been widely applied for the treatment of diseases such as hyperlipidemia, fatty liver and obesity in China. In the present work, a rapid resolution liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (RRLC-Q-TOF-MS)-based metabolomics was conducted to investigate the intervention effect of Schisandra chinensis lignans (SCL) on hyperlipidemia mice induced by high-fat diet (HFD).

METHODS

Hyperlipidemia mice were orally administered with SCL (100 mg/kg) once a day for 4 weeks. Serum biochemistry assay of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) was conducted to confirm the treatment of SCL on lipid regulation. Metabolomics analysis on serum samples was carried out, and principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of liver lipid metabolism, sterol regulatory element-binding proteins (SREBPs) and its related gene expressions were measured by quantitative real-time polymerase chain reaction (RT-PCR) for investigating the underlying mechanism.

RESULTS

Oral administration of SCL significantly decreased the serum levels of TC, TG and LDL-c and increased the serum level of HDL-c in the hyperlipidemia mice, and no effect of SCL on blood lipid levels was observed in control mice. Serum samples were scattered in the PCA scores plots in response to the control, HFD and SCL group. Totally, thirteen biomarkers were identified and nine of them were recovered to the normal levels after SCL treatment. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, the anti-hyperlipidemia mechanisms of SCL may be involved in the following metabolic pathways: tricarboxylic acid (TCA) cycle, synthesis of ketone body and cholesterol, choline metabolism and fatty acid metabolism. Meanwhile, SCL significantly inhibited the mRNA expression level of hepatic lipogenesis genes such as SREBP-1c, fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), and decreased the mRNA expression of liver X receptor α (LXRα). Moreover, SCL also significantly decreased the expression level of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) in the liver of hyperlipidemia mice.

CONCLUSIONS

Anti-hyperlipidemia effect of SCL was confirmed by both serum biochemistry and metabolomics analysis. The mechanism may be related to the down-regulation of LXRα/SREBP-1c/FAS/ACC and SREBP2/HMGCR signaling pathways.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge