Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Proceedings of the National Academy of Sciences of the United States of America 1985-Sep

Molecular mechanism of water oxidation in photosynthesis based on the functioning of manganese in two different environments.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
T Kambara
Govindjee

Nøgleord

Abstrakt

We present a model of photosynthetic water oxidation that utilizes the property of higher-valent Mn ions in two different environments and the characteristic function of redox-active ligands to explain all known aspects of electron transfer from H(2)O to Z, the electron donor to P680, the photosystem II reaction center chlorophyll a. There are two major features of this model. (i) The four functional Mn atoms are divided into two groups of two Mn each: [Mn] complexes in a hydrophobic cavity in the intrinsic 34-kDa protein; and (Mn) complexes on the hydrophilic surface of the extrinsic 33-kDa protein. The oxidation of H(2)O is carried out by two [Mn] complexes, and the protons are transferred from a [Mn] complex to a (Mn) complex along the hydrogen bond between their respective ligand H(2)O molecules. (ii) Each of the two [Mn] ions binds one redox-active ligand (RAL), such as a quinone (alternatively, an aromatic amino acid residue). Electron transfer occurs from the reduced RAL to the oxidized Z. When the experimental data concerning atomic structure of the water-oxidizing center (WOC), electron transfer between the WOC and Z, the electronic structure of the WOC, the proton-release pattern, and the effect of Cl(-) are compared with the predictions of the model, satisfactory qualitative and, in many instances, quantitative agreements are obtained. In particular, this model clarifies the origin of the observed absorption-difference spectra, which have the same pattern in all S-state transitions, and of the effect of Cl(-)-depletion on the S states.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge