Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Vision 2014

Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Ali Koskela
Mika Reinisalo
Juha M T Hyttinen
Kai Kaarniranta
Reijo O Karjalainen

Nøgleord

Abstrakt

OBJECTIVE

In this work, we investigated the ability of pinosylvin (PS), 3,5-dihydroxy-trans-stilbene, to modulate oxidative stress in human RPE cells. PS, a stilbenoid polyphenol, occurs in high concentrations in bark byproducts and therefore represents an attractive bioactive compound for health-promoting applications.

METHODS

First, we evaluated the toxicity range of PS by exposing ARPE-19 cells to 0.1-200 µM concentrations of PS for 24 h followed by the cell viability test. In the next stage, the ARPE-19 cells were preincubated in PS for 24 h followed by hydroquinone (HQ) exposure without PS for another 24 h. The cell viability test was conducted after HQ exposure. To elucidate the potential mechanisms behind PS-mediated protection against oxidative stress, the ARPE-19 cells were treated with 5 µM PS for 6 h, and mRNA was extracted at four time points (2 h, 6 h, 12 h, 24 h) to determine changes in the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), sequestosome 1 (p62/SQSTM1), heme oxygenase-1 (HO-1), and glutathione S-transferase pi 1 (GSTP1) genes. To clarify the molecular mechanism behind PS-mediated protection further, the ARPE-19 cells were transfected with p62 and Nrf2 siRNAs for 24 h, and the roles of p62, Nrf2, and its target gene HO-1 in conferring protection against oxidative stress were studied with quantitative real-time PCR (qRT-PCR) and the cell viability test.

RESULTS

PS treatment at concentrations of 5 and 10 µM significantly enhanced cell survival from oxidative stress. The expression levels of an enzyme with antioxidative, anti-inflammatory, and immunomodulatory properties, HO-1, were increased by PS treatment and correlated strongly with cell survival. PS treatment did not elevate the expression levels of Nrf2 or its target genes, p62 or GSTP1, even though it had a clear effect on the expression of HO-1, another gene controlled by Nrf2. RNA interference analysis further confirmed the important role of Nrf2 and HO-1 in PS-mediated protection against oxidative stress whereas the role of p62 seemed to be insignificant at the gene expression and cell viability levels.

CONCLUSIONS

Our results suggest that PS treatment conferred protection against oxidative stress through the induction of HO-1 in human RPE cells. Consequently, PS-stilbene compounds, which can be isolated in significant amounts from bark waste, may possess health-promoting properties against aging-related diseases associated with oxidative stress such as age-related macular degeneration (AMD) and Alzheimer's disease. These natural compounds may offer opportunities for high-value use of bark waste in diverse health-related applications.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge