Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2015-Sep

Proteomics approach to analyze protein profiling related with ADME/Tox in rat treated with Scutellariae radix and Coptidis rhizoma as well as their compatibility.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Qing Miao
Yuan-Yuan Zhao
Pei-Pei Miao
Ning Chen
Xue-Hua Yan
Chang-E Guo
Hong-Ying Chen
Yu-Jie Zhang

Nøgleord

Abstrakt

BACKGROUND

Scutellariae radix (Scutellaria baicalensis Georgi) and Coptidis rhizoma (Coptis chinensis Franch), known as traditional Chinese medicine (TCM), have been widely used with the effects of suppressing fever, dispelling dampness, purging fire and removing toxicosis. Owing to their unimaginable complexity, it is difficult to understand their pharmacokinetic properties in detail. The aim of this study was to develop an optimal proteomics approach to analyze the protein profiling related with ADME/Tox in rat liver treated with S. radix and C. rhizoma as well as their compatibility.

METHODS

Male rats were respectively administered the extracts of S. radix, C. rhizoma and their mixture for 7 days, and their liver tissue samples were prepared for the comparative proteomic analysis. The significantly differentially expressed proteins between the experimental groups and the control group were found and identified by 2-DE and MALDI-TOF-MS analyses. To validate the proteomic analysis results, glutathion peroxidase, catalase and betaine homocysteine methyl transferase were selected and confirmed by western blotting.

RESULTS

Seventy eight significantly differentially expressed proteins between the experimental groups and the control group were found and identified. By querying the relational databases, the identified differentially expressed proteins were summarized and classified into three groups, phase I drug metabolic enzymes, phase II drug metabolic enzymes and the rest proteins which mainly involve in energy metabolism, signal transduction and cytoskeleton. These proteins involved in ADME/Tox may be the targets for metabolic studies or markers for toxicity.

CONCLUSIONS

Our findings indicated S. radix and C. rhizoma as well as their compatibility can assuredly influence the expression of the proteins in rat liver. After administration, the majority of these expressions presented a downward trend, which may be closely related to the pharmacological properties of the medicine. The method in this study may open up a new road for the complementary tests for ADME/Tox properties of S. radix and C. rhizoma as well as their compatibility.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge