Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European journal of biochemistry 2000-May

Purification, molecular cloning and ethylene-inducible expression of a soluble-type epoxide hydrolase from soybean (Glycine max [L.] Merr.).

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
M Arahira
V H Nong
K Udaka
C Fukazawa

Nøgleord

Abstrakt

A soybean protein was purified from mature dry seeds. Amino-acid sequencing of the nine internal peptides derived from this N-terminally blocked protein showed that it has a significant similarity to the soluble epoxide hydrolases known to date. A degenerate series of 23-mer oligonucleotides with sequences corresponding to an internal region of eight amino-acid residues was synthesized as a probe mixture for detection of a putative epoxide hydrolase cDNA in a developing cotyledon cDNA library. The 1332-bp cDNA obtained was found to have an open-reading frame encoding the seed epoxide hydrolase-like precursor consisting of 341 amino-acid residues, suggesting that 25 amino-acid residues upstream from the second methionine correspond to a transit peptide. Employing an Escherichia coli expression system, the putative mature epoxide hydrolase-like protein was overexpressed and purified to homogeneity. This recombinant protein was confirmed to exhibit its epoxide-diol converting activity using styrene oxide as substrate. The Vmax and Km values for styrene oxide are 1.36 micromol x min-1 x mg-1 and 1500 microM, respectively. Sedimentation equilibrium experiments showed that the active form of this epoxide hydrolase is monomeric in solution. Using the above cDNA as a probe, a 12-kb genomic clone was selected and the sequence of a 1933-bp fragment from this clone was found to cover the entire coding region together with 5'- and 3'-flanking regions of the soybean epoxide hydrolase gene. The coding region of the gene, interrupted by two short introns, was identical to the corresponding regions of the cDNA. Northern blot analyses showed that this epoxide hydrolase gene was expressed strongly at a very early stage (13 days after flowering) and then the level of expression gradually decreased and almost ceased at a very late stage (58 days after flowering) of seed development, whereas its expression was markedly up-regulated by ethylene treatment. In stems (hypocotyl portion), the epoxide hydrolase transcript was detected at significant levels and was also up-regulated in response to ethylene. On the other hand, it is hardly expressed in leaves, even though they were treated with the phytohormone. Overall, the results obtained may indicate that soluble-type epoxide hydrolase mRNA is expressed at the maximum level in an early stage of seed development. Later, oil bodies are formed and subsequently epoxy fatty acids, naturally occurring metabolites, accumulate within those bodies. The temporal induction of this epoxide hydrolase transcript in some tissues in response to ethylene also indicates that this epoxide hydrolase may play a crucial role in self-defense systems of plant.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge