Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
BMC Plant Biology 2012-May

RNAi-mediated silencing of the HD-Zip gene HD20 in Nicotiana attenuata affects benzyl acetone emission from corollas via ABA levels and the expression of metabolic genes.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Delfina A Ré
Brenda Raud
Raquel L Chan
Ian T Baldwin
Gustavo Bonaventure

Nøgleord

Abstrakt

BACKGROUND

The N. attenuata HD20 gene belongs to the homeodomain-leucine zipper (HD-Zip) type I family of transcription factors and it has been previously associated with the regulation of ABA accumulation in leaves and the emission of benzyl acetone (BA; 4-phenyl-2-butanone) from night flowers. In this study, N. attenuata plants stably reduced in the expression of HD20 (ir-hd20) were generated to investigate the mechanisms controlling the emission of BA from night flowers.

RESULTS

The expression of HD20 in corollas of ir-hd20 plants was reduced by 85 to 90% compared to wild-type plants (WT) without affecting flower morphology and development. Total BA emitted from flowers of ir-hd20 plants was reduced on average by 60%. This reduction occurred mainly at the late phase of BA emission and it was correlated with 2-fold higher levels of ABA in the corollas of ir-hd20 plants. When a 2-fold decline in ABA corolla levels of these plants was induced by salt stress, BA emissions recovered to WT levels. Supplying ABA to WT flowers either through the cuticle or by pedicle feeding reduced the total BA emissions by 25 to 50%; this reduction occurred primarily at the late phase of emission (similar to the reduction observed in corollas of ir-hd20 plants). Gene expression profiling of corollas collected at 12 pm (six hours before the start of BA emission) revealed that 274 genes changed expression levels significantly in ir-hd20 plants compared to WT. Among these genes, more than 35% were associated with metabolism and the most prominent group was associated with the metabolism of aromatic compounds and phenylpropanoid derivatives.

CONCLUSIONS

The results indicated that regulation of ABA levels in corollas is associated with the late phase of BA emission in N. attenuata plants and that HD20 affects this latter process by mediating changes in both ABA levels and metabolic gene expression.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge