Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2017-Jan

Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle size and addition rate.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Junhui Chen
Songhao Li
Chenfei Liang
Qiufang Xu
Yongchun Li
Hua Qin
Jeffry J Fuhrmann

Nøgleord

Abstrakt

Biochar incorporated into soil has been known to affect soil nutrient availability and act as a habitat for microorganisms, both of which could be related to its particle size. However, little is known about the effect of particle size on soil microbial community structure and function. To investigate short-term soil microbial responses to biochar addition having varying particle sizes and addition rates, we established a laboratory incubation study. Biochar produced via pyrolysis of bamboo was ground into three particle sizes (diameter size<0.05mm (fine), 0.05-1.0mm (medium) and 1.0-2.0mm (coarse)) and amended at rates of 0% (control), 3% and 9% (w/w) in an intensively managed bamboo (Phyllostachys praecox) plantation soil. The results showed that the fine particle biochar resulted in significantly higher soil pH, electrical conductivity (EC), available potassium (K) concentrations than the medium and coarse particle sizes. The fine-sized biochar also induced significantly higher total microbial phospholipid fatty acids (PLFAs) concentrations by 60.28% and 88.94% than the medium and coarse particles regardless of addition rate, respectively. Redundancy analysis suggested that the microbial community structures were largely dependent of particle size, and that improved soil properties were key factors shaping them. The cumulative CO2 emissions from biochar-amended soils were 2-56% lower than the control and sharply decreased with increasing addition rates and particle sizes. Activities of α-glucosidase, β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, peroxidase and dehydrogenase decreased by ranging from 7% to 47% in biochar-amended soils over the control, indicating that biochar addition reduced enzyme activities involved carbon cycling capacity. Our results suggest that biochar addition can affect microbial population abundances, community structure and enzyme activities, that these effects are particle size and rate dependent. The fine particle biochar may additionally produce a better habitat for microorganisms compared to the other particle sizes.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge