Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Radiation and Isotopes 2010-Feb

Root-uptake of (14)C derived from acetic acid and (14)C transfer to rice edible parts.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Shinichi Ogiyama
Hiroyuki Suzuki
Kazuyuki Inubushi
Hiroshi Takeda
Shigeo Uchida

Nøgleord

Abstrakt

Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of (14)C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The (14)C radioactivity in the plant, mediums, and atmospheric carbon dioxide ((14)CO(2)) in the chamber were determined, and the distribution of (14)C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had (14)C radioactivity, but the upper root which did not have contact with the solution had none. There were also (14)C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that (14)CO(2) gas was released from the culture solution in both types of cultures. Results indicated that the (14)C-acetic acid absorbed by rice plant through its root would be very small. Most of the (14)C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate (14)C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of (14)C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated (14)C through the plant roots not because of uptake of (14)C-acetic acid but because of uptake of (14)C in gaseous forms such as (14)CO(2).

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge