Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Reproduction 2019-Sep

Sex change in kiwifruit (Actinidia chinensis Planch.): a developmental framework for the bisexual to unisexual floral transition.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Elisabetta Caporali
Raffaele Testolin
Simon Pierce
Alberto Spada

Nøgleord

Abstrakt

The developmental morphology of male and female kiwifruit flowers is tracked to delimit a framework of events to aid the study of divergence in floral gene expression. The transition from hermaphrodite to unisexual development of kiwifruit (Actinidia chinensis Planch) flowers has been reported previously, but differences in gene expression controlling sexual development for this species have not been associated with the major developmental changes occurring within pistils. We investigated the key stages in male and female flower development to define the point at which meristematic activities diverge in the two sexes. A combination of scanning electron microscopy and light microscopy was used to investigate pistil development from the earliest stages. We identified seven distinct stages characterized by differences in ovary size and shape, macrosporogenesis, ovule primordium development, anther locule lengthening, microspore wall thickening, and pollen degeneration. Sex differences were evident from the initial stage of development, with a laterally compacted gynoecium in male flowers. However, the key developmental stage, at which tissue differentiation clearly deviated between the two sexes, was stage 3, when flowers were 3.5 to 4.5 mm in length at approximately 10 d from initiation of stamen development. At this stage, male flowers lacked evident carpel meristem development as denoted by a lack of ovule primordium formation. Pollen degeneration in female flowers, probably driven by programmed cell death, occurred at the late stage 6, while the final stage 7 was represented by pollen release. As the seven developmental stages are associated with specific morphological differences, including flower size, the scheme suggested here can provide the required framework for the future study of gene expression during the regulation of flower development in this crop species.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge