Danish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemistry 2011-May

Structure-based redesign of cofactor binding in putrescine oxidase.

Kun registrerede brugere kan oversætte artikler
Log ind / Tilmeld
Linket gemmes på udklipsholderen
Malgorzata M Kopacz
Stefano Rovida
Esther van Duijn
Marco W Fraaije
Andrea Mattevi

Nøgleord

Abstrakt

Putrescine oxidase (PuO) from Rhodococcus erythropolis is a soluble homodimeric flavoprotein, which oxidizes small aliphatic diamines. In this study, we report the crystal structures and cofactor binding properties of wild-type and mutant enzymes. From a structural viewpoint, PuO closely resembles the sequence-related human monoamine oxidases A and B. This similarity is striking in the flavin-binding site even if PuO does not covalently bind the cofactor as do the monoamine oxidases. A remarkable conserved feature is the cis peptide conformation of the Tyr residue whose conformation is important for substrate recognition in the active site cavity. The structure of PuO in complex with the reaction product reveals that Glu324 is crucial in recognizing the terminal amino group of the diamine substrate and explains the narrow substrate specificity of the enzyme. The structural analysis also provides clues for identification of residues that are responsible for the competitive binding of ADP versus FAD (~50% of wild-type PuO monomers isolated are occupied by ADP instead of FAD). By replacing Pro15, which is part of the dinucleotide-binding domain, enzyme preparations were obtained that are almost 100% in the FAD-bound form. Furthermore, mutants have been designed and prepared that form a covalent 8α-S-cysteinyl-FAD linkage. These data provide new insights into the molecular basis for substrate recognition in amine oxidases and demonstrate that engineering of flavoenzymes to introduce covalent linkage with the cofactor is a possible route to develop more stable protein molecules, better suited for biocatalytic purposes.

Deltag i vores
facebook-side

Den mest komplette database med medicinske urter understøttet af videnskab

  • Arbejder på 55 sprog
  • Urtekurer, der understøttes af videnskab
  • Urtegenkendelse ved billede
  • Interaktivt GPS-kort - tag urter på stedet (kommer snart)
  • Læs videnskabelige publikationer relateret til din søgning
  • Søg medicinske urter efter deres virkninger
  • Organiser dine interesser og hold dig opdateret med nyhedsundersøgelser, kliniske forsøg og patenter

Skriv et symptom eller en sygdom, og læs om urter, der kan hjælpe, skriv en urt og se sygdomme og symptomer, den bruges mod.
* Al information er baseret på offentliggjort videnskabelig forskning

Google Play badgeApp Store badge